科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為
;
當(dāng)P是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)“為它自身,平面曲線C上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線
定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn)
,則點(diǎn)
的“伴隨點(diǎn)”是點(diǎn)A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”
關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,
、
是兩個(gè)垃圾中轉(zhuǎn)站,
在
的正東方向
千米處,
的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在
的北面建一個(gè)垃圾發(fā)電廠
.垃圾發(fā)電廠
的選址擬滿足以下兩個(gè)要求(
、
、
可看成三個(gè)點(diǎn)):①垃圾發(fā)電廠到兩個(gè)垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)
到直線
的距離要盡可能大).現(xiàn)估測得
、
兩個(gè)中轉(zhuǎn)站每天集中的生活垃圾量分別約為
噸和
噸.設(shè)
.
![]()
(1)求
(用
的表達(dá)式表示);
(2)垃圾發(fā)電廠該如何選址才能同時(shí)滿足上述要求?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項(xiàng)數(shù)列
,
滿足:對任意正整數(shù)
,都有
,
,
成等差數(shù)列,
,
,
成等比數(shù)列,且
,
.
(Ⅰ)求證:數(shù)列
是等差數(shù)列;
(Ⅱ)求數(shù)列
,
的通項(xiàng)公式;
(Ⅲ)設(shè)
=
+
+…+
,如果對任意的正整數(shù)
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在
上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)設(shè)
,判斷
在
上是否為有界函數(shù),若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數(shù)
在
上是以
為上界的有界函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項(xiàng)數(shù)列
,
滿足:對任意正整數(shù)
,都有
,
,
成等差數(shù)列,
,
,
成等比數(shù)列,且
,
.
(Ⅰ)求證:數(shù)列
是等差數(shù)列;
(Ⅱ)求數(shù)列
,
的通項(xiàng)公式;
(Ⅲ)設(shè)
=
+
+…+
,如果對任意的正整數(shù)
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義
上的函數(shù)
,若滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)設(shè)
,判斷
在
上是否有界函數(shù),若是,請說明理由,并寫出
的所有上界的值的集合,若不是,也請說明理由;
(2)若函數(shù)
在
上是以3為上界的有界函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩人同時(shí)參加一次數(shù)學(xué)測試,共有20道選擇題,每題均有4個(gè)選項(xiàng),答對得3分,答錯(cuò)或不答得0分,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項(xiàng)不同,如果甲最終的得分為54分,那么乙的所有可能的得分值組成的集合為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列
、
滿足:
,
,
,
.
(1)求
,
,
,
;
(2)求證:數(shù)列
是等差數(shù)列,并求
的通項(xiàng)公式;
(3)設(shè)
,若不等式
對任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)橢圓
:
(
)的右焦點(diǎn)為
,短軸的一個(gè)端點(diǎn)
到
的距離等于焦距.
![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)
、
是四條直線
,
所圍成的矩形在第一、第二象限的兩個(gè)頂點(diǎn),
是橢圓
上任意一點(diǎn),若
,求證:
為定值;
(3)過點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
、
,且滿足△
與△
的面積的比值為
,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在
上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)設(shè)
,判斷
在
上是否為有界函數(shù),若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數(shù)
在
上是以
為上界的有界函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com