科目: 來(lái)源: 題型:
【題目】如圖,半徑為2的
切直線MN于點(diǎn)P,射線PK從PN出發(fā)繞點(diǎn)P逆時(shí)針?lè)较蛐D(zhuǎn)到PM,旋轉(zhuǎn)過(guò)程中,PK交
于點(diǎn)Q,設(shè)
為x,弓形PmQ的面積為
,那么
的圖象大致是
![]()
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)設(shè)
是函數(shù)
的極值點(diǎn),求證:
;
(Ⅱ)設(shè)
是函數(shù)
的極值點(diǎn),且
恒成立,求實(shí)數(shù)
的取值范圍.(其中正
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知圓
,直線
.
(1)證明:不論
取什么實(shí)數(shù),直線
與圓恒交于兩點(diǎn);
(2)若直線
與圓
相交于
,求
時(shí)
的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(1)已知直線
經(jīng)過(guò)點(diǎn)
,且與直線
的夾角為
,求直線
的方程;
(2)已知
中頂點(diǎn)
的平分線方程分別為
和
.求
邊所在的直線方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】下列命題:①“
”是“存在
,使得
成立”的充分不必要條件;②“
”是“存在
,使得
成立”的必要條件;③“
”是“不等式
對(duì)一切
恒成立”的充要條件. 其中所以真命題的序號(hào)是
A.③B.②③C.①②D.①③
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得:
,
,
,
,
,線性回歸模型的殘差平方和
,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關(guān)于x的回歸方程
=
x+
(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關(guān)于x的回歸方程為
=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說(shuō)明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線
=
x+
的斜率和截距的最小二乘估計(jì)為
=![]()
;相關(guān)指數(shù)R2=
.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】對(duì)于函數(shù)
和
,設(shè)
,
,若存在
,使得
,則稱(chēng)
與
互為“零點(diǎn)相鄰函數(shù)”.若函數(shù)
與
互為“零點(diǎn)相鄰函數(shù)”,則實(shí)數(shù)
的取值范圍是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線
的極坐標(biāo)方程為
.
(1)把曲線
的方程化為普通方程,
的方程化為直角坐標(biāo)方程
(2)若曲線
,
相交于
兩點(diǎn),
的中點(diǎn)為
,過(guò)
點(diǎn)作曲線
的垂線交曲線
于
兩點(diǎn),求
.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓
的長(zhǎng)軸長(zhǎng)為4,焦距為![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)
的直線交
軸與點(diǎn)
,交
于點(diǎn)
(
在第一象限),且
是線段
的中點(diǎn).過(guò)點(diǎn)
作
軸的垂線交
于另一點(diǎn)
,延長(zhǎng)
交
于點(diǎn)
.
(ⅰ)設(shè)直線
的斜率分別為
,證明
為定值;
(ⅱ)求直線
的斜率的最小值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com