科目: 來源: 題型:
【題目】在自然數(shù)列中由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1;再染兩個偶數(shù)2,4;再染4后最鄰近的三個連續(xù)奇數(shù)5,7,9;再染9后最鄰近的四個連續(xù)偶數(shù)10,12,14,16;再染此后最鄰近的五個連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直染下去,得一紅色子列1,2,4,5,7,9,10,12,14,16,17,….則紅色子列中由1開始數(shù)起的第1996個數(shù)是_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】濱海市政府今年加大了招商引資的力度,吸引外資的數(shù)量明顯增加.一外商計劃在濱海市投資兩個項目,總投資20億元,其中甲項目的10年收益額
(單位:億元)與投資額
(單位:億元)滿足
,乙項目的10年收益額
(單位:億元)與投資額
(單位:億元)滿足
,并且每個項目至少要投資2億元.設(shè)兩個項目的10年收益額之和為
.
(1)求
;
(2)如何安排甲、乙兩個項目的投資額,才能使這兩個項目的10年收益額之和
最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,過F且斜率為
的直線l與拋物線C交于A,B兩點,B在x軸的上方,且點B的橫坐標(biāo)為4.![]()
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)點P為拋物線C上異于A,B的點,直線PA與PB分別交拋物線C的準(zhǔn)線于E,G兩點,x軸與準(zhǔn)線的交點為H,求證:HGHE為定值,并求出定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l方程為(m+2)x﹣(m+1)y﹣3m﹣7=0,m∈R.
(1)求證:直線l恒過定點P,并求出定點P的坐標(biāo);
(2)若直線l在x軸,y軸上的截距相等,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校有微機
臺,分別放在
個房間,各房間開門鑰匙互不相同.某期培訓(xùn)班有學(xué)員
人(
),每晚恰有
人進機房實習(xí)操作,為保證每人一臺機,至少應(yīng)準(zhǔn)備多少把鑰匙分給這
個學(xué)員,使得每晚不論哪
個人進機房,都能用自己分到的鑰匙打開一間機房的門進去練習(xí),并按分得鑰匙少的人先開門的原則,能保證每人恰可得到一個房間.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓![]()
(1)求圓
關(guān)于直線
對稱的圓
的標(biāo)準(zhǔn)方程;
(2)過點
的直線
被圓
截得的弦長為8,求直線
的方程;
(3)當(dāng)
取何值時,直線
與圓
相交的弦長最短,并求出最短弦長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓
過點
,且圓心在直線
上.
(1)求圓
的方程;
(2)平面上有兩點
,點
是圓
上的動點,求
的最小值;
(3)若
是
軸上的動點,
分別切圓
于
兩點,試問:直線
是否恒過定點?若是,求出定點坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓E:
,若橢圓上一點與其中心及長軸一個端點構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)如圖,若直線l與橢圓相交于AB且AB是圓
的一條直徑,求橢圓E的標(biāo)準(zhǔn)方程.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
分別是雙曲線
的左、右焦點,過點
作垂直與
軸的直線交雙曲線于
,
兩點,若
為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】![]()
【解析】
根據(jù)雙曲線的通徑求得
點的坐標(biāo),將三角形
為銳角三角形,轉(zhuǎn)化為
,即
,將表達式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線的通徑可知
,由于三角形
為銳角三角形,結(jié)合雙曲線的對稱性可知
,故
,即
,即
,解得
,故離心率的取值范圍是
.
【點睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形
為銳角三角形,轉(zhuǎn)化為
,利用
列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結(jié)束】
17
【題目】已知命題
:方程
有兩個不相等的實數(shù)根;命題
:不等式
的解集為
.若
或
為真,
為假,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com