科目: 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2
,BC=4
,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點(diǎn)M,使得二面角MACD的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
AB=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC,如圖②所示.
![]()
(1)證明:平面ABD⊥平面BCD;
(2)求二面角DABC的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓
:
.
![]()
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知
,圓
與x軸相交于兩點(diǎn)
(點(diǎn)
在點(diǎn)
的左側(cè)).過點(diǎn)
任作一條直線與圓
:
相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得
=
?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在各棱長均為2的三棱柱
中,側(cè)面
底面ABC,
.
(1)求側(cè)棱
與平面
所成角的正弦值的大。
(2)已知點(diǎn)D滿足
,在直線
上是否存在點(diǎn)P,使DP∥平面
?若存在,請確定點(diǎn)P的位置,若不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉庫,設(shè)
,并在公路北側(cè)建造邊長為
的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且
.
(1)求
關(guān)于
的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:
取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017·全國Ⅱ卷)如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=
AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
![]()
(1)證明:直線CE∥平面PAB;
(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)數(shù)列
的前
項(xiàng)和為
,對任意的正整數(shù)
,都有
成立,記
.
(1)求數(shù)列
與數(shù)列
的通項(xiàng)公式;
(2)記
,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對任意正整數(shù)
,都有
;
(3)設(shè)數(shù)列
的前
項(xiàng)和為
,是否存在正整數(shù)
,使得
成立?若存在,找出一個正整數(shù)
;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)證明:在平面BCE上,一定存在過點(diǎn)C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在四棱臺ABCDA1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2.
(1)若M為CD中點(diǎn),求證:AM⊥平面AA1B1B;
(2)求直線DD1與平面A1BD所成角的正弦值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,AC與BD相交于點(diǎn)O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BED所成的角為45°時,求異面直線OF與BE所成的角的余弦值大小.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com