科目: 來源: 題型:
【題目】已知兩點A(-
,0),B(
,0),動點P在y軸上的投影是Q,且
.
(1)求動點P的軌跡C的方程;
(2)過F(1,0)作互相垂直的兩條直線交軌跡C于點G,H,M,N,且E1,E2分別是GH,MN的中點.求證:直線E1E2恒過定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】某集團(tuán)為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經(jīng)調(diào)查投入廣告費t(百萬元),可增加銷售額約為-t2+5t(百萬元)(0≤t≤5) (注:收益=銷售額-投放).
(1)若該公司將當(dāng)年的廣告費控制在3百萬元之內(nèi),則應(yīng)投入多少廣告費,才能使該公司由此獲得的收益最大?
(2)現(xiàn)該公司準(zhǔn)備共投入3百萬元,分別用于廣告促銷和技術(shù)改造.經(jīng)預(yù)測,每投入技術(shù)改造費x(百萬元),可增加的銷售額約為-
x3+x2+3x(百萬元).請設(shè)計一個資金分配方案,使該公司由此獲得的收益最大.
查看答案和解析>>
科目: 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差
,
和患感冒的小朋友人數(shù)(
/人)的數(shù)據(jù)如下:
溫差 |
|
|
|
|
|
|
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中
,
,
.
(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合
與的關(guān)系;
(Ⅱ)建立
關(guān)于
的回歸方程(精確到
),預(yù)測當(dāng)晝夜溫差升高
時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):
.參考公式:相關(guān)系數(shù):
,回歸直線方程是
,
,
查看答案和解析>>
科目: 來源: 題型:
【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素
某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”
現(xiàn)已得知100人中同意父母生“二孩”占
,統(tǒng)計情況如表:
性別屬性 | 同意父母生“二孩” | 反對父母生“二孩” | 合計 |
男生 | 10 | ||
女生 | 30 | ||
合計 | 100 |
請補充完整上述列聯(lián)表;
根據(jù)以上資料你是否有
把握,認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由.
參考公式與數(shù)據(jù):
,其中![]()
|
|
|
|
|
|
|
|
k |
|
|
|
|
|
|
|
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=log
( |x + 1| + |x- 1|- a ).
(I)當(dāng)a=3時,求函數(shù)f(x)的定義域;
(Ⅱ)若不等式f(x)
的解集為R,求實數(shù)a的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C的兩個焦點分別為F1(-1,0)、F2(1,0),短軸的兩個端點分別為B1,B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長為2,過點F2的直線l與橢圓C相交于P,Q兩點,且
,求直線l的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com