科目: 來源: 題型:
【題目】(題文)已知等差數(shù)列{an}的首項a1≠0,前n項和為Sn,且S4+a2=2S3;等比數(shù)列{bn}滿足b1=a2,b2=a4.
(1)求證:數(shù)列{bn}中的每一項都是數(shù)列{an}中的項;
(2)若a1=2,設(shè)cn=
,求數(shù)列{cn}的前n項和Tn;
(3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為保障公平性,高考時每個考點都要安裝手機屏蔽儀,要求在考點周圍1千米處不能收到手機信號,如圖,檢查員抽查某市一考點
,以考點
正西
千米的
處開始為檢查起點,沿著一條北偏東
方向的公路
,以每小時12千米的速度行駛,并用手機接通電話,問從起點開始計時,最長經(jīng)過多少分鐘檢查員開始收不到信號(
點開始),并至少持續(xù)多長時間(
之間)該考點才算檢查合格?
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖是改革開放四十周年大型展覽的展館--------國家博物館.現(xiàn)欲測量博物館正門柱樓頂部一點
離地面的高度
(點
在柱樓底部).在地面上的兩點
,
測得點
的仰角分別為
,
,且
,
米,則
為( )
![]()
A. 10米 B. 20米 C. 30米 D. 40米
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓
:
和點
,動圓
經(jīng)過點
且與圓
相切,圓心
的軌跡為曲線
.
(Ⅰ)求曲線
的方程;
(Ⅱ)四邊形
的頂點在曲線
上,且對角線
均過坐標原點,若
.
(i) 求
的范圍;(ii) 求四邊形
的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知{xn}是各項均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2.
(1)求數(shù)列{xn}的通項公式;
(2)如圖,在平面直角坐標系xOy中,依次連接點P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線P1P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知{an}是各項均為正數(shù)的等比數(shù)列,且a1+a2=6,a1a2=a3.
(1)求數(shù)列{an}的通項公式;
(2){bn}為各項非零的等差數(shù)列,其前n項和為Sn.已知S2n+1=bnbn+1,求數(shù)列{
}的前n項和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5.
(1)求{an}的通項公式;
(2)求和:b1+b3+b5+…+b2n-1.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列
和等比數(shù)列
滿足
,
,
.
(1)求
的通項公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】試題分析:(1)根據(jù)等差數(shù)列
的
,
,列出關(guān)于首項
、公差
的方程組,解方程組可得
與
的值,從而可得數(shù)列
的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項
,公比
的方程組,解得
、
的值,求出數(shù)列
的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
從而
.
【題型】解答題
【結(jié)束】
18
【題目】已知命題
:實數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若
,且
為真,求實數(shù)
的取值范圍;
(2)若
是
的充分不必要條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線
的參數(shù)方程是
(
為參數(shù))以原點為極點,
軸正半軸為極軸,并取與直角坐標系相同的單位長度,建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線
,
的直角坐標方程;
(2)若
、
分別是曲線
和
上的任意點,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com