科目: 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎(jiǎng).甲說:“乙或丙未獲獎(jiǎng)”;乙說:“甲、丙都獲獎(jiǎng)”;丙說:“我未獲獎(jiǎng)”;丁說:“乙獲獎(jiǎng)”.四位同學(xué)的話恰有兩句是對(duì)的,則( )
A. 甲和乙不可能同時(shí)獲獎(jiǎng) B. 丙和丁不可能同時(shí)獲獎(jiǎng)
C. 乙和丁不可能同時(shí)獲獎(jiǎng) D. 丁和甲不可能同時(shí)獲獎(jiǎng)
【答案】C
【解析】若甲乙丙同時(shí)獲獎(jiǎng),則甲丙的話錯(cuò),乙丁的話對(duì);符合題意;
若甲乙丁同時(shí)獲獎(jiǎng),則乙的話錯(cuò),甲丙丁的話對(duì);不合題意;
若甲丙丁同時(shí)獲獎(jiǎng),則丙丁的話錯(cuò),甲乙的話對(duì);符合題意;;
若丙乙丁同時(shí)獲獎(jiǎng),則甲乙丙的話錯(cuò),丁的話對(duì);不合題意;
因此乙和丁不可能同時(shí)獲獎(jiǎng),選C.
【題型】單選題
【結(jié)束】
12
【題目】已知當(dāng)
時(shí),關(guān)于
的方程
有唯一實(shí)數(shù)解,則
值所在的范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足f(4)=f(﹣2)=1,f′(x)為f(x)的導(dǎo)函數(shù),且導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.則不等式f(x)<1的解集是( )
![]()
A. (﹣2,0)
B. (﹣2,4)
C. (0,4)
D. (﹣∞,﹣2)∪(4,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線
的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求曲線
的直角坐標(biāo)方程及曲線
上的動(dòng)點(diǎn)
到坐標(biāo)原點(diǎn)
的距離
的最大值;
(Ⅱ)若曲線
與曲線
相交于
,
兩點(diǎn),且與
軸相交于點(diǎn)
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(
且
).
(1)判斷
的奇偶性并證明;
(2)若
,是否存在
,使
在
的值域?yàn)?/span>
?若存在,求出此時(shí)
的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是 ( )
A. “若
,則
,或
”的否定是“若
則
,或
”
B. a,b是兩個(gè)命題,如果a是b的充分條件,那么
是
的必要條件.
C. 命題“
,使 得
”的否定是:“
,均有
”
D. 命題“ 若
,則
”的否命題為真命題.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
經(jīng)過點(diǎn)
(
,
),且兩個(gè)焦點(diǎn)
,
的坐標(biāo)依次為(
1,0)和(1,0).
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)
,
是橢圓
上的兩個(gè)動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),直線
的斜率為
,直線
的斜率為
,求當(dāng)
為何值時(shí),直線
與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)
和圓
,過
的動(dòng)直線
與圓
交于
、
兩點(diǎn),過
作直線
,交
于
點(diǎn).
![]()
(Ⅰ)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)若不經(jīng)過
的直線
與軌跡
交于
兩點(diǎn),且
.求證:直線
恒過定點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系
中,平行于
軸且過點(diǎn)
的入射光線
被直線
反射,反射光線
交
軸于
點(diǎn),圓
過點(diǎn)
,且與
、
相切.
![]()
(Ⅰ)求
所在直線的方程;
(Ⅱ)求圓
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com