科目: 來源: 題型:
【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費(fèi)m(萬元)(m≥0)滿足x=3-
.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤y(萬元)表示為年促銷費(fèi)m(萬元)的函數(shù);
(2)求今年該產(chǎn)品利潤的最大值,此時促銷費(fèi)為多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據(jù)上表說明,能否有
的把握認(rèn)為,收看開幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學(xué)生各選取多少人?
(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙、丙三人玩摸卡片游戲,現(xiàn)有標(biāo)號為1到12的卡片共12張,每人摸4張.
甲說:我摸到卡片的標(biāo)號是10和12;
乙說:我摸到卡片的標(biāo)號是6和11;
丙說:我們?nèi)烁髯悦娇ㄆ臉?biāo)號之和相等.
據(jù)此可判斷丙摸到的編號中必有的兩個是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會期間累計(jì)觀看冬奧會的時間情況.收集了200位男生、100位女生累計(jì)觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機(jī)抽取20個人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.
![]()
(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為
,在答題卡上完成頻率分布直方圖;
(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;
(3)以(1)中的頻率估計(jì)100位女生中累計(jì)觀看時間小于20個小時的人數(shù).已知200位男生中累計(jì)觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認(rèn)為“該校學(xué)生觀看冬奧會累計(jì)時間與性別有關(guān)”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方體
中,
分別為
的中點(diǎn),點(diǎn)
是底面
內(nèi)一點(diǎn),且
平面
,則
的最大值是( )
![]()
A.
B. 2 C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生的寫作水平與離好閱讀是否有關(guān),隨機(jī)詢問120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計(jì)算可得K2=4.236
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,可得正確的結(jié)論是( )
A.有95%的把握認(rèn)為“寫作水平與喜好閱讀有關(guān)”
B.有97.5%的把握認(rèn)為“寫作水平與喜好閱讀有關(guān)”
C.有95%的把握認(rèn)為“寫作水平與喜好閱讀無關(guān)”
D.有97.5%的把握認(rèn)為“寫作水平與喜好閱讀無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=–3x2+2x–m+1.
(1)若x=0為函數(shù)的一個零點(diǎn),求m的值;
(2)當(dāng)m為何值時,函數(shù)有兩個零點(diǎn)、一個零點(diǎn)、無零點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)曲線
的一個焦點(diǎn),
為坐標(biāo)原點(diǎn),點(diǎn)
為拋物線
上任意一點(diǎn),過點(diǎn)
作
軸的平行線交拋物線的準(zhǔn)線于
,直線
交拋物線于點(diǎn)
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)求證:直線
過定點(diǎn)
,并求出此定點(diǎn)的坐標(biāo).
【答案】(I)
;(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線
化為標(biāo)準(zhǔn)方程,可求得
的焦點(diǎn)坐標(biāo)分別為
,可得
,所以
,即拋物線的方程為
;(Ⅱ)結(jié)合(Ⅰ),可設(shè)
,得
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得
,直線
的方程為
,整理得
的方程為
,此時直線恒過定點(diǎn)
.
試題解析:(Ⅰ)由曲線
,化為標(biāo)準(zhǔn)方程可得
, 所以曲線
是焦點(diǎn)在
軸上的雙曲線,其中
,故
,
的焦點(diǎn)坐標(biāo)分別為
,因?yàn)閽佄锞的焦點(diǎn)坐標(biāo)為
,由題意知
,所以
,即拋物線的方程為
.
(Ⅱ)由(Ⅰ)知拋物線
的準(zhǔn)線方程為
,設(shè)
,顯然
.故
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得![]()
①當(dāng)
,即
時,直線
的方程為
,
②當(dāng)
,即
時,直線
的方程為
,整理得
的方程為
,此時直線恒過定點(diǎn)
,
也在直線
的方程為
上,故直線
的方程恒過定點(diǎn)
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)
, ![]()
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)若
時,關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若數(shù)列
滿足
,
,記
的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的離心率為
是橢圓的兩個焦點(diǎn),
是橢圓上任意一點(diǎn),且
的周長是6.
(1)求橢圓
的方程;
(2)設(shè)圓:
,過橢圓的上頂點(diǎn)作圓
的兩條切線交橢圓于
兩點(diǎn),當(dāng)圓心在
軸上移動且
時,求
的斜率的取值范圍.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com