科目: 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且
=2csinA
(1)確定角C的大小;
(2)若c=
,且△ABC的面積為
,求a+b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于任意實數(shù)a,b,定義min{a,b}=
,定義在R上的偶函數(shù)f (x)滿足f (x+4)=f(x),且當(dāng)0≤x≤2時,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有兩個根,則m的取值范圍是( )
A.{﹣1,1}∪(﹣ln2,-
)∪(
,ln2)
B.[﹣1,-
)∪ ![]()
C.{﹣1,1}∪(﹣ln2,-
)∪(
,ln2)
D.(-
,-
)∪(
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】以雙曲線
(a>0,b>0)上一點M為圓心的圓與x軸恰相切于雙曲線的一個焦點F,且與y軸交于P、Q兩點.若△MPQ為正三角形,則該雙曲線的離心率為( )
A.4
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位.且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點A,B.若點P的坐標(biāo)為(1,2),求|PA|+|PB|的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(1)若函數(shù)g(x)=f(x)﹣ax在其定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且2x0=m+n.問:函數(shù)F(x)在點(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知D為圓O:x2+y2=8上的動點,過點D向x軸作垂線DN,垂足為N,T在線段DN上且滿足
.
(1)求動點T的軌跡方程;
(2)若M是直線l:x=﹣4上的任意一點,以O(shè)M為直徑的圓K與圓O相交于P,Q兩點,求證:直線PQ必過定點E,并求出點E的坐標(biāo);
(3)若(2)中直線PQ與動點T的軌跡交于G,H兩點,且
,求此時弦PQ的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}中,
的對稱軸為
.
(1)試證明{2nan}是等差數(shù)列,并求{an}的通項公式;
(2)設(shè){an}的前n項和為Sn , 求Sn .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面ABCD是菱形,∠ABC=60°,AB=PC=2,
. ![]()
(1)求證:平面PAD⊥平面ABCD;
(2)求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+m(m∈R),將y=f(x)的圖象向左平移
個單位后得到y(tǒng)=g(x)的圖象,且y=g(x)在區(qū)間
內(nèi)的最大值為
.
(1)求實數(shù)m的值;
(2)在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,若
,且a+c=2,求△ABC的周長l的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com