科目: 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
![]()
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)f(x)=2x2+(x﹣2a)|x﹣a|在區(qū)間[﹣3,1]上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是( )
A.[﹣4,1]
B.[﹣3,1]
C.(﹣6,2)
D.(﹣6,1)
查看答案和解析>>
科目: 來源: 題型:
【題目】如果函數(shù)f(x)=
滿足:對于任意的x1 , x2∈[0,2],都有|f(x1)﹣f(x2)|≤a2恒成立,則a的取值范圍是( )
A.[﹣
]
B.[﹣
]
C.(﹣
] ![]()
D.(﹣
]∪[
)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐
中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,
.
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在
,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
![]()
(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質量為
,
的芒果中隨機抽取
個,再從這
個中隨機抽取
個,求這
個芒果中恰有
個在
內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有
個,經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以
元/千克收購;
B:對質量低于
克的芒果以
元/個收購,高于或等于
克的以
元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線
的參數(shù)方程為
(
為參數(shù)).以直角坐標系的原點
為極點,
軸的正半軸為極軸建立坐標系,曲線
的極坐標方程為
.
(1)求
的普通方程和
的直角坐標方程;
(2)若過點
的直線
與
交于
,
兩點,與
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C以坐標軸為對稱軸,以坐標原點為對稱中心,橢圓的一個焦點為
,點
在橢圓上,
Ⅰ
求橢圓C的方程.
Ⅱ
斜率為k的直線l過點F且不與坐標軸垂直,直線l交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l經(jīng)過拋物線y2=6x的焦點F,且與拋物線相交于A,B兩點.
(1)若直線l的傾斜角為60°,求|AB|的值;
(2)若|AB|=9,求線段AB的中點M到準線的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】設f(x)=|ax﹣2|.
(1)若關于x的不等式f(x)<3的解集為(﹣
,
),求a的值;
(2)f(x)+f(﹣x)≥a對于任意x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com