科目: 來源: 題型:
【題目】已知曲線C:
=1(y≥0),直線l:y=kx+1與曲線C交于A,D兩點,A,D兩點在x軸上的射影分別為點B,C.記△OAD的面積S1 , 四邊形ABCD的面積為S2 . (Ⅰ)當點B坐標為(﹣1,0)時,求k的值;
(Ⅱ)若S1=
,求線段AD的長;
(Ⅲ)求
的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】德國數(shù)學家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即
);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)n(首項)按照上述規(guī)則施行變換后的第8項為1(注:l可以多次出現(xiàn)),則n的所有不同值的個數(shù)為
A. 4 B. 6 C. 8 D. 32
查看答案和解析>>
科目: 來源: 題型:
【題目】某險種的基本保費為
(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費與其上年度的出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 |
|
保費 |
|
|
|
|
|
|
設(shè)該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險次數(shù) | 0 | 1 | 2 | 3 | 4 |
|
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續(xù)保人本年度的保費高于基本保費的概率;
(Ⅱ)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出
的概率;
(Ⅲ)求續(xù)保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2+ax+a). (I)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=
. ![]()
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求三棱錐P﹣BCE的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+
,現(xiàn)有一組數(shù)據(jù),繪制得到莖葉圖,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.(莖葉圖中的數(shù)據(jù)均為小數(shù),其中莖為整數(shù)部分,葉為小數(shù)部分) ![]()
(Ⅰ)求a的值;
(Ⅱ)現(xiàn)從莖葉圖小于3的數(shù)據(jù)中任取2個數(shù)據(jù)分別替換m的值,求恰有1個數(shù)據(jù)使得函數(shù)f(x)沒有零點的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓形紙片的圓心為
,半徑為1,該紙片上的等邊三角形
的中心為
.
、
、
為圓
上的點,
,
,
分別是以
,
,
為底邊的等腰三角形.沿虛線剪開后,分別以
,
,
為折痕折起
,
,
,使得
、
、
重合,得到三棱錐.當
的邊長變化時,所得三棱錐體積的最大值為__________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】定義“規(guī)范01數(shù)列”
如下:
共有
項,其中
項為0,
項為1,且對任意
,
,
,…,
中0的個數(shù)不少于1的個數(shù).若
,則不同的“規(guī)范01數(shù)列”共有( )
A. 14個 B. 13個 C. 15個 D. 12個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
的圖像是由函數(shù)
的圖像經(jīng)如下變換得到:先將
圖像上所有點的縱坐標伸長到原來的2倍(橫坐標不變),再將所得到的圖像向右平移
個單位長度.
(Ⅰ)求函數(shù)
的解析式,并求其圖像的對稱軸方程;
(Ⅱ)已知關(guān)于
的方程
在
內(nèi)有兩個不同的解
.
(1)求實數(shù)m的取值范圍;
(2)證明:![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等比數(shù)列
的前
項和為
,公比
,
,
.
(1)求等比數(shù)列
的通項公式;
(2)設(shè)
,求
的前
項和
.
【答案】(1)
(2)![]()
【解析】
(1)將已知兩式作差,利用等比數(shù)列的通項公式,可得公比,由等比數(shù)列的求和可得首項,進而得到所求通項公式;(2)求得bn=n,
,由裂項相消求和可得答案.
(1)等比數(shù)列
的前
項和為
,公比
,
①,
②.
②﹣①,得
,則
,
又
,所以
,
因為
,所以
,
所以
,
所以
;
(2)
,![]()
所以前
項和
.
【點睛】
裂項相消法適用于形如
(其中
是各項均不為零的等差數(shù)列,c為常數(shù))的數(shù)列. 裂項相消法求和,常見的有相鄰兩項的裂項求和,還有一類隔一項的裂項求和,如
或
.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)
的圖象上有兩點
,
.函數(shù)
滿足
,且
.
(1)求證:
;
(2)求證:
;
(3)能否保證
和
中至少有一個為正數(shù)?請證明你的結(jié)論.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com