科目: 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,拋物線
的方程為
.
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,求
的極坐標(biāo)方程;
(2)直線
的參數(shù)方程是
(
為參數(shù)),
與
交于
兩點(diǎn),
,求
的斜率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知
是橢圓的左、右焦點(diǎn),
為坐標(biāo)原點(diǎn),點(diǎn)
在橢圓上,線段
與
軸的交點(diǎn)
滿足
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)圓
是以
為直徑的圓,一直線
與之相切,并與橢圓交于不同的兩點(diǎn)
、
,當(dāng)
且滿足
時(shí),求
的面積
的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直圖,如右圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品.以
(單位:t,100≤
≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).
![]()
(Ⅰ)將T表示為
的函數(shù);
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】正三角形
的邊長(zhǎng)為2,將它沿高
翻折,使點(diǎn)
與點(diǎn)
間的距離為1,此時(shí)四面體
外接球的表面積是________________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】為了解學(xué)生的課外閱讀時(shí)間情況,某學(xué)校隨機(jī)抽取了50人進(jìn)行統(tǒng)計(jì)分析,把這50人每天閱讀的時(shí)間(單位:分鐘)繪制成頻數(shù)分布表,如下表所示:
閱讀時(shí)間 |
|
|
|
|
|
|
人數(shù) | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天閱讀時(shí)間在60分鐘以上(含60分鐘)的同學(xué)稱為“閱讀達(dá)人”,根據(jù)統(tǒng)計(jì)結(jié)果中男女生閱讀達(dá)人的數(shù)據(jù),制作成如圖所示的等高條形圖.
![]()
(1)根據(jù)抽樣結(jié)果估計(jì)該校學(xué)生的每天平均閱讀時(shí)間(同一組數(shù)據(jù)用該區(qū)間的終點(diǎn)值作為代表);
(2)根據(jù)已知條件完成下面的
列聯(lián)表,并判斷是否有99%的把握認(rèn)為“閱讀達(dá)人”跟性別有關(guān)?
男生 | 女生 | 總計(jì) | |
閱讀達(dá)人 | |||
非閱讀達(dá)人 | |||
總計(jì) |
附:參考公式
,其中
.
臨界值表:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)
是兩個(gè)不共線的非零向量.
(1)設(shè)
,
,
,那么當(dāng)實(shí)數(shù)t為何值時(shí),A,B,C三點(diǎn)共線;
(2)若
,
且
與
的夾角為60°,那么實(shí)數(shù)x為何值時(shí)
的值最。孔钚≈禐槎嗌?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知直線
,
,
,記
,
,
.
(1)當(dāng)
時(shí),求原點(diǎn)關(guān)于直線
的對(duì)稱點(diǎn)坐標(biāo);
(2)在
中,求
邊上中線長(zhǎng)的最小值;
(3)求
面積的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為
,乙獲勝的概率為
,各局比賽結(jié)果相互獨(dú)立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決勝出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
的方程為
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)方程;
(2)若
與
有且僅有三個(gè)公共點(diǎn),求
的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】知函數(shù)
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)討論
的單調(diào)性;
(3)若
,
,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com