科目: 來源: 題型:
【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分別直方圖.
![]()
(1)求這100份數(shù)學(xué)試卷成績的中位數(shù);
(2)從總分在
和
的試卷中隨機(jī)抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
、
、
、
是同一平面上不共線的四點(diǎn),若存在一組正實(shí)數(shù)
、
、
,使得
,則三個(gè)角
、
、
( )
A. 都是鈍角B. 至少有兩個(gè)鈍角
C. 恰有兩個(gè)鈍角D. 至多有兩個(gè)鈍角
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
f(x)=(cosx﹣x)(π+2x)﹣
(sinx+1)
g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣
)
證明:
(1)存在唯一x0∈(0,
),使f(x0)=0;
(2)存在唯一x1∈(
,π),使g(x1)=0,且對(Ⅰ)中的x0 , 有x0+x1<π.
查看答案和解析>>
科目: 來源: 題型:
【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線C1:
過點(diǎn)P且離心率為
. ![]()
(1)求C1的方程;
(2)若橢圓C2過點(diǎn)P且與C1有相同的焦點(diǎn),直線l過C2的右焦點(diǎn)且與C2交于A,B兩點(diǎn),若以線段AB為直徑的圓過點(diǎn)P,求l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為慶祝成立二十周年,特舉辦《快樂大闖關(guān)》競技類有獎(jiǎng)活動(dòng),該活動(dòng)共有四關(guān),由兩名男職員與兩名女職員組成四人小組,設(shè)男職員闖過一至四關(guān)概率依次是
,女職員闖過一至四關(guān)的概率依次是![]()
(1)求女職員闖過四關(guān)的概率;
(2)設(shè)
表示四人小組闖過四關(guān)的人數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點(diǎn). ![]()
(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
有兩個(gè)極值點(diǎn)
(
為自然對數(shù)的底數(shù)).
(Ⅰ)求實(shí)數(shù)
的取值范圍;
(Ⅱ)求證:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會(huì)在韓國平昌舉行.4年后,第24 屆冬奧會(huì)將在中國北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會(huì)開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
![]()
(1)根據(jù)上表說明,能否有
的把握認(rèn)為,收看開幕式與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).若從這12人中隨機(jī)選取3人到校廣播站開展冬奧會(huì)及冰雪項(xiàng)目的宣傳介紹,設(shè)選取的3 人中女生人數(shù)為
,寫出
的分布列,并求
.
附:
,其中
.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙、丙三名大學(xué)生參加學(xué)校組織的“國學(xué)達(dá)人”挑戰(zhàn)賽, 每人均有兩輪答題機(jī)會(huì),當(dāng)且僅當(dāng)?shù)谝惠啿贿^關(guān)時(shí)進(jìn)行第二輪答題.根據(jù)平時(shí)經(jīng)驗(yàn),甲、乙、丙三名大學(xué)生每輪過關(guān)的概率分別為
,且三名大學(xué)生每輪過關(guān)與否互不影響.
(1)求甲、乙、丙三名大學(xué)生都不過關(guān)的概率;
(2)記
為甲、乙、丙三名大學(xué)生中過關(guān)的人數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,
在一個(gè)周期內(nèi)的圖像如圖所示.
![]()
(I)求函數(shù)
的解析式;
(II)設(shè)
,且方程
有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍以及這兩個(gè)根的和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com