科目: 來源: 題型:
【題目】若函數(shù)
的圖象向左平移
個單位,得到的函數(shù)圖象的對稱中心與f(x)圖象的對稱中心重合,則ω的最小值是( )
A.1
B.2
C.4
D.8
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC 內(nèi)部取n 個點, 將△ABC剖分為若干個小三角形(每兩個小三角形或者有一個公共頂點,或者有一條公共邊,或者完全沒有公共點,如圖所示).現(xiàn)將點A 染紅色, 點B 染藍色,點C 染黑色,其余n 個點的每個點也任意染上紅、藍、黑三色之一.我們稱三個頂點的顏色恰為紅、藍、黑的小三角形為“特征三角形”.證明:至少有一個小三角形是特征三角形.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=
,BC=BB1=2.
![]()
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求點D到平面ABC1的距離d.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進行消防知識競賽.下圖(1)和下圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按
,
,
,
分組,得到的頻率分布直方圖.
![]()
(1)請計算高一年級和高二年級成績小于60分的人數(shù);
(2)完成下面
列聯(lián)表,并回答:有多大的把握可以認為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?
![]()
附:臨界值表及參考公式:
,
.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知命題p:x∈(1,+∞),
>1;命題q:a∈(0,1),函數(shù)y=ax在(﹣∞,+∞)上為減函數(shù),則下列命題為真命題的是( )
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q
查看答案和解析>>
科目: 來源: 題型:
【題目】某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=emx+x2﹣mx(m∈R).
(1)當(dāng)m=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若m<0,且曲線y=f(x)在點(1,f(1))處的切線與直線x+(e+1)y=0垂直.
(i)當(dāng)x>0時,試比較f(x)與f(﹣x)的大小;
(ii)若對任意x1 , x2(x1≠x2),且f(x1)=f(x2),證明:x1+x2<0.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
的離心率為
,依次連接橢圓的四個頂點得到的菱形面積為4.
(1)求橢圓的方程;
(2)過點
且斜率為
的直線
交橢圓
于
,
兩點,設(shè)
與
面積之比為
(其中
為坐標(biāo)原點),當(dāng)
時,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點F1 , F2在軸上,焦距為2,離心率為
.
(1)求橢圓C的方程;
(2)若P是橢圓C上第一象限內(nèi)的點,△PF1F2的內(nèi)切圓的圓心為I,半徑為
.求:
(i)點P的坐標(biāo);
(ii)直線PI的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com