科目: 來源: 題型:
【題目】數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知
的頂點
,若其歐拉線方程為
,則頂點C的坐標是()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)滿足:①對于任意實數(shù)x,y都有f(x+y)+1=f(x)+f(x)且f(
)=0;②當x>
時,f(x)<0.
(1)求證:f(x)=
+
f(2x);
(2)用數(shù)學歸納法證明:當x∈[
,
](n∈N*)時, f(x)≤1-
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=loga
(a>0且a≠1).
(1)求f(x)的定義域;
(2)當0<a<1時,判斷f(x)在(2,+∞)的單惆性;
(3)是否存在實數(shù)a,使得當f(x)的定義域為[m,n]時,值域為[1+logan,1+1ogam],若存在,求出實數(shù)a的范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD是圓柱OO′的軸截面,點P在圓柱OO′的底面圓周上,圓柱OO′的底面圓的半徑OA=1,側(cè)面積為2π,∠AOP=60°.
![]()
(1)求證:PB⊥平面APD;
(2)是否存在點G在PD上,使得AG⊥BD;并說明理由.
(3)求三棱錐D-AGB的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)an=1+
+=
+…+
(n∈N*),是否存在一次函數(shù)g(x),使得a1+a2+a3+…+an-1=g(n)(an-1)對n≥2的一切正整數(shù)都成立?并試用數(shù)學歸納法證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a,b∈R,c∈[0,2π),若對于任意實數(shù)x都有2sin(3x﹣
)=asin(bx+c),則滿足條件的有序?qū)崝?shù)組(a,b,c)的組數(shù)為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】對于每項均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.對于每項均是非負整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2(B).又定義S(B)=2(b1+2b2+…+mbm)+
+
+…+
.設(shè)A0是每項均為正整數(shù)的有窮數(shù)列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).
(1)如果數(shù)列A0為2,6,4,8,寫出數(shù)列A1,A2;
(2)對于每項均是正整數(shù)的有窮數(shù)列A,證明:S(T1(A))=S(A);
(3)證明:對于任意給定的每項均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當k≥K時,S(Ak+1)=S(Ak).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com