科目: 來源: 題型:
【題目】在三棱錐ABCD中,BC⊥CD,Rt△BCD斜邊上的高為1,三棱錐ABCD的外接球的直徑是AB,若該外接球的表面積為16π,則三棱錐ABCD體積的最大值為( )
A.![]()
B.![]()
C.1
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C:
=1(a>b>0)過點P(1,
).離心率為
.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A,B兩點.
①若直線l過橢圓C的右焦點,記△ABP三條邊所在直線的斜率的乘積為t.
求t的最大值;
②若直線l的斜率為
,試探究OA2+ OB2是否為定值,若是定值,則求出此
定值;若不是定值,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:設(shè)一正方形紙片ABCD邊長為2分米,切去陰影部分所示的四個全等的等腰三角形,剩余為一個正方形和四個全等的等腰三角形,沿虛線折起,恰好能做成一個正四棱錐(粘接損耗不計),圖中
,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長都相等,求這個正四棱錐的體積V;
(Ⅱ)設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】秦九韶是我國南宋時代的數(shù)學家,其代表作《數(shù)書九章》是我國13世紀數(shù)學成就的代表之一,秦九韶利用其多項式算法,給出了求高次代數(shù)方程的完整算法,這一成就比西方同樣的算法早五六百年,如圖是該算法求函數(shù)f(x)=x3+x+1零點的程序框圖,若輸入x=﹣1,c=1,d=0.1,則輸出的x的值為( )![]()
A.﹣0.6
B.﹣0.69
C.﹣0.7
D.﹣0.71
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x-1+
x2-2,試利用基本初等函數(shù)的圖象,判斷f(x)有幾個零點,并利用零點存在性定理確定各零點所在的區(qū)間(各區(qū)間長度不超過1).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點
是橢圓
:
的短軸位于
軸下方的端點,過
作斜率為1的直線交橢圓于
點,點
在
軸上,且
軸,
.
(1)若點
的坐標為
,求橢圓
的方程;
(2)若點
的坐標為
,求實數(shù)
的取值范圍.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x+sinx+cosx,以下說法中不正確的是( )
A.f(x)周期為2π
B.f(x)最小值為﹣ ![]()
C.f(x)在區(qū)間[0,
]單調(diào)遞增
D.f(x)關(guān)于點x=
對稱
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓M的圓心在直線
上,且經(jīng)過點A(-3,0),B(1,2).
(1)求圓M的方程;
(2)直線
與圓M相切,且
在y軸上的截距是
在x軸上截距的兩倍,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求四棱錐P—ABCD的體積.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com