科目: 來源: 題型:
【題目】如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
![]()
(1)求證:EC⊥CD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分8分)某班50名學生在一次數(shù)學測試中,成績全部介于50與100之間,將測試結果按如下方式分成五組:第一組[50,60),第二組[60,70),…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.
![]()
(Ⅰ)若成績大于或等于60且小于80,認為合格,求該班在這次數(shù)學測試中成績合格的人數(shù);
(Ⅱ)從測試成績在[50,60)∪[90,100]內的所有學生中隨機抽取兩名同學,設其測試成績分別為m、n,求事件“|m﹣n|>10”概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線
的右焦點為
,
是雙曲線C上的點,
,連接
并延長
交雙曲線C與點P,連接
,若
是以
為頂點的等腰直角三角形,則雙曲線C的漸近線方程為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l的參數(shù)方程為
(t為參數(shù)),曲線C的極坐標方程是ρ=
,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6
,求BC的長.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C經過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4
,半徑小于5.
(Ⅰ)求直線PQ與圓C的方程;
(Ⅱ)若直線l∥PQ,直線l與圓C交于點A,B且以線段AB為直徑的圓經過坐標原點,求直線l的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com