科目: 來源: 題型:
【題目】在△ABC中,AB=3,AC=4,N是AB的中點(diǎn),邊AC(含端點(diǎn))上存在點(diǎn)M,使得BM⊥CN,則cosA的取值范圍為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)集合M={m|m∈Z,且|m|≤2018},M的子集S滿足:對(duì)S中任意3個(gè)元素a,b,c(不必不同),都有a+b+c≠0.求集合S的元素個(gè)數(shù)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
的一個(gè)焦點(diǎn)
與拋物線
的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為
.
(1)求該橢圓
的方程;
(2)若過點(diǎn)
的直線
與橢圓
相交于
,
兩點(diǎn),且點(diǎn)
恰為弦
的中點(diǎn),求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C1的參數(shù)方程是
(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)系方程是
,正方形ABCD的頂點(diǎn)都在C1上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為
.
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C2上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線,切點(diǎn)A是BD的中點(diǎn),AC、BD相交于點(diǎn)E,AB、PE相交于點(diǎn)F,直線CF交⊙O于另一點(diǎn)G、交PA于點(diǎn)K.
![]()
證明:(1)K是PA的中點(diǎn);(2)
..
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)是數(shù)學(xué)中重要的概念之一,同學(xué)們?cè)诔跞、高一分別學(xué)習(xí)過,也知曉其發(fā)展過程.1692年,德國(guó)數(shù)學(xué)家萊布尼茨首次使用function這個(gè)詞,1734年瑞士數(shù)學(xué)家歐拉首次使用符號(hào)f(x)表示函數(shù).1859年我國(guó)清代數(shù)學(xué)家李善蘭將function譯作函數(shù),“函”意味著信件,巧妙地揭示了對(duì)應(yīng)關(guān)系.密碼學(xué)中的加密和解密其實(shí)就是函數(shù)與反函數(shù).對(duì)自變量恰當(dāng)?shù)刭x值是處理函數(shù)問題,尤其是處理抽象函數(shù)問題的常用方法之一.請(qǐng)你解答下列問題.
已知函數(shù)f(x)滿足:對(duì)任意的整數(shù)a,b均有f(a+b)=f(a) +f(b)+ab+2,且f(-2)=-3.求f(96)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△DEF三邊所在的直線分別為l1:x=-2,l2:x+
y-4=0,l3:x-
y-4=0,⊙C為△DEF的內(nèi)切圓.
(1)求⊙C的方程;
(2)設(shè)⊙C與x軸交于A、B兩點(diǎn),點(diǎn)P在⊙C內(nèi),且滿足
.記直線PA、PB的斜率分別為k1、k2,求k1 k2的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D. ![]()
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=3,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐中,SA=SB=AB=BC=CA=6,且側(cè)面ASB⊥底面ABC,則三棱錐S-ABC外接球的表面積為( )
![]()
A. 60π B. 56π C. 52π D. 48π
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com