科目: 來源: 題型:
【題目】已知橢圓
上的焦點(diǎn)為
,離心率為
.
![]()
(1)求橢圓方程;
(2)設(shè)過橢圓頂點(diǎn)
,斜率為
的直線交橢圓于另一點(diǎn)
,交
軸于點(diǎn)
,且
,
,
成等比數(shù)列,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)實數(shù)x,y滿足不等式組
,(2,1)是目標(biāo)函數(shù)z=﹣ax+y取最大值的唯一最優(yōu)解,則實數(shù)a的取值范圍是( )
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)判斷并證明函數(shù)
的奇偶性;
(2)判斷當(dāng)
時函數(shù)
的單調(diào)性,并用定義證明;
(3)若
定義域為
,解不等式
.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)![]()
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)
在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)
為奇函數(shù).證明如下:
定義域為![]()
又![]()
為奇函數(shù)
(2)函數(shù)
在(-1,1)為單調(diào)函數(shù).證明如下:
任取
,則
![]()
![]()
, ![]()
![]()
即![]()
故
在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得: ![]()
所以,原不等式的解集為![]()
【點(diǎn)睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)
.
(1)若
的定義域和值域均是
,求實數(shù)
的值;
(2)若
在區(qū)間
上是減函數(shù),且對任意的
,都有
,求實數(shù)
的取值范圍;
(3)若
,且對任意的
,都存在
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC為銳角三角形,命題p:不等式logcosC
>0恒成立,命題q:不等式logcosC
>0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
+
=1的焦點(diǎn)分別是
、
,
是橢圓上一點(diǎn),若連結(jié)
、
、
三點(diǎn)恰好能構(gòu)成直角三角形,則點(diǎn)
到
軸的距離是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在北京召開的第24屆國際數(shù)學(xué)家大會會標(biāo)如圖所示,它是由四個相同的直角三角形與中間的小正方形拼成的一個大正方形.若直角三角形中較小的銳角記作
,大正方形的面積是1,小正方形的面積是
,則
的值等于( )
![]()
A. 1 B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
(a>b>0)的焦點(diǎn)在圓x2+y2=3上,且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點(diǎn)O的直線l與橢圓C交于A,B兩點(diǎn),F為右焦點(diǎn),若△FAB為直角三角形,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).
![]()
(1)求證:MN∥平面PAD;
(2)在PB上確定一個點(diǎn)Q,使平面MNQ∥平面PAD.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com