科目: 來源: 題型:
【題目】在直角坐標(biāo)系
中,橢圓
的左、右焦點(diǎn)分別為
,
也是拋物線
的焦點(diǎn),點(diǎn)
為
與
在第一象限的交點(diǎn),且
.
(1)求
的方程;
(2)平面上的點(diǎn)
滿足
,直線
,且與
交于
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:三棱錐
中,側(cè)面
垂直底面,
是底面最長(zhǎng)的邊;圖1是三棱錐
的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測(cè)畫法畫出的三棱錐
的直觀圖的一部分,其中點(diǎn)
在
平面內(nèi).
(Ⅰ)請(qǐng)?jiān)趫D2中將三棱錐
的直觀圖補(bǔ)充完整,并指出三棱錐
的哪些面是直角三角形;![]()
![]()
(Ⅱ)設(shè)二面角
的大小為
,求
的值;
(Ⅲ)求點(diǎn)
到面
的距離.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱
中,底面
為正三角形,
底面
,且
,
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)在側(cè)棱
上是否存在一點(diǎn)
,使得三棱錐
的體積是
?若存在,求出
的長(zhǎng);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=
CA,求證:MN∥平面DEF
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)
為圓
的圓心,
是圓上動(dòng)點(diǎn),點(diǎn)
在圓的半徑
上,且有點(diǎn)
和
上的點(diǎn)
,滿足![]()
(1)當(dāng)
在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(2)若斜率為
的直線
與圓
相切,與(1)中所求點(diǎn)
的軌跡教育不同的兩點(diǎn)
是坐標(biāo)原點(diǎn),且
時(shí),求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】一條光線經(jīng)過P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長(zhǎng)度.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)
,
,其中
是實(shí)數(shù).
(1)解關(guān)于
的不等式
.
(2)若
,求關(guān)于
的方程
實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
(
)的上頂點(diǎn)到右頂點(diǎn)的距離為
,左焦點(diǎn)為
,過點(diǎn)
且斜率為
的直線
交橢圓于
,
兩點(diǎn).
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程及
的取值范圍;
(Ⅱ)在
軸上是否存在定點(diǎn)
,使
恒為定值?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com