科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的對稱軸方程;
(2)將函數(shù)
的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移
個單位,得到函數(shù)
的圖象.若
,
,
分別是
△三個內(nèi)角
,
,
的對邊,
,
,且
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)數(shù)列
的前
項和為
,且對任意正整數(shù)
,滿足
.
(1)求數(shù)列
的通項公式.
(2)設(shè)
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測點A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時間比在B地晚![]()
秒. A地測得該儀器彈至最高點H時的仰角為30°.
![]()
(1)求A、C兩地的距離;
(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓
:
和點
,動圓
經(jīng)過點
且與圓
相切,圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)點
是曲線
與
軸正半軸的交點,點
,
在曲線
上,若直線
,
的斜率分別是
,
,滿足
,求
面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知圓
的方程為:
,直線
的方程為
.
(1)求證:直線
恒過定點;
(2)當(dāng)直線
被圓
截得的弦長最短時,求直線
的方程;
(3)在(2)的前提下,若
為直線
上的動點,且圓
上存在兩個不同的點到點
的距離為
,求點
的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
,
分別為
,
的中點,點
在線段
上.
![]()
(1)求證:
平面
;
(2)若直線
與平面
所成的角和直線
與平面
所成的角相等,求
的值.
【答案】(1)證明見解析;(2)
.
【解析】試題分析:
(Ⅰ)在平行四邊形
中,由條件可得
,進(jìn)而可得
。由側(cè)面
底面
,得
底面
,故得
,所以可證得
平面
.(Ⅱ)先證明平面
平面
,由面面平行的性質(zhì)可得
平面
.(Ⅲ)建立空間直角坐標(biāo)系,通過求出平面的法向量,根據(jù)線面角的向量公式可得
。
試題解析:
(Ⅰ)證明:在平行四邊形
中,
∵
,
,
,
∴
,
∴
,
∵
,
分別為
,
的中點,
∴
,
∴
,
∵側(cè)面
底面
,且
,
∴
底面
,
又
底面
,
∴
,
又
,
平面
,
平面
,
∴
平面
.
(Ⅱ)證明:∵
為
的中點,
為
的中點,
∴
,
又
平面
,
平面
,
∴
平面
,
同理
平面
,
又
,
平面
,
平面
,
∴平面
平面
,
又
平面
,
∴
平面
.
(Ⅲ)解:由
底面
,
,可得
,
,
兩兩垂直,
建立如圖空間直角坐標(biāo)系
,
![]()
則
,
,
,
,
,
,
所以
,
,
,
設(shè)
,則
,
∴
,
,
易得平面
的法向量
,
設(shè)平面
的法向量為
,則:
由
,得
,
令
,得
,
∵直線
與平面
所成的角和此直線與平面
所成的角相等,
∴
,即
,
∴
,
解得
或
(舍去),
故
.
點睛:用向量法確定空間中點的位置的方法
根據(jù)題意建立適當(dāng)?shù)目臻g直角坐標(biāo)系,由條件確定有關(guān)點的坐標(biāo),運用共線向量用參數(shù)(參數(shù)的范圍要事先確定)確定出未知點的坐標(biāo),根據(jù)向量的運算得到平面的法向量或直線的方向向量,根據(jù)所給的線面角(或二面角)的大小進(jìn)行運算,進(jìn)而求得參數(shù)的值,通過與事先確定的參數(shù)的范圍進(jìn)行比較,來判斷參數(shù)的值是否符合題意,進(jìn)而得出點是否存在的結(jié)論。
【題型】解答題
【結(jié)束】
21
【題目】如圖,橢圓
上的點到左焦點的距離最大值是
,已知點
在橢圓上,其中
為橢圓的離心率.
![]()
(1)求橢圓的方程;
(2)過原點且斜率為
的直線交橢圓于
、
兩點,其中
在第一象限,它在
軸上的射影為點
,直線
交橢圓于另一點
.證明:對任意的
,點
恒在以線段
為直徑的圓內(nèi).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com