科目: 來源: 題型:
【題目】已知線段
的端點
,端點
在圓
上運動
(Ⅰ)求線段
的中點
的軌跡方程.
(Ⅱ) 設動直線
與圓
交于
兩點,問在
軸正半軸上是否存在定點
,使得直線
與直線
關于
軸對稱?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ<
)個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0,
]上單調(diào)遞增,則φ的取值范圍是( )
A.[
,
]
B.[
,
)
C.[
,
]
D.[
,
]
查看答案和解析>>
科目: 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,則下列說法正確的( ) ![]()
A.a∈(2,4),輸出的i的值為5
B.a∈(4,5),輸出的i的值為5
C.a∈(3,4),輸出的i的值為5
D.a∈(2,4),輸出的i的值為5
查看答案和解析>>
科目: 來源: 題型:
【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合.曲線
(t為參數(shù)),曲線C2的極坐標方程為ρ=ρcos2θ+8cosθ. (Ⅰ)將曲線C1 , C2分別化為普通方程、直角坐標方程,并說明表示什么曲線;
(Ⅱ)設F(1,0),曲線C1與曲線C2相交于不同的兩點A,B,求|AF|+|BF|的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C1 , 拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上各取兩個點,其坐標分別是(3,一2
),(一2,0),(4,一4),(
). (Ⅰ)求C1 , C2的標準方程;
(Ⅱ)是否存在直線L滿足條件:①過C2的焦點F;②與C1交與不同的兩點M,N且滿足
?若存在,求出直線方程;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖 1,在直角梯形
中,
,且
.現(xiàn)以
為一邊向外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點,如圖 2.
(1)求證:
平面
;
(2)求證:
平面
;
(3)求
與平面
所成角的正弦值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣4x,g(x)=﹣x2﹣3. (Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
CD=2,M是線段AE上的動點. ![]()
(Ⅰ)試確定點M的位置,使AC∥平面MDF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面MDF將幾何體ADE﹣BCF分成的兩部分的體積之比.
查看答案和解析>>
科目: 來源: 題型:
【題目】《中華人民共和國個人所得稅法》規(guī)定,公民全月工資、薪金(扣除三險一金后)所得不超過3500元的部分不必納稅,超過3500元的部分為全月應納稅所得額個人所得稅計算公式:應納稅額=工資-三險一金=起征點. 其中,三險一金標準是養(yǎng)老保險8%、醫(yī)療保險2%、失業(yè)保險1%、住房公積金8%,此項稅款按下表分段累計計算:
![]()
(1)某人月收入15000元(未扣三險一金),他應交個人所得稅多少元?
(2)某人一月份已交此項稅款為1094元,那么他當月的工資(未扣三險一金)所得是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】在中學生綜合素質(zhì)評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下: 表1:男生表2:女生
等級 | 優(yōu)秀 | 合格 | 尚待改進 | 等級 | 優(yōu)秀 | 合格 | 尚待改進 | |
頻數(shù) | 15 | x | 5 | 頻數(shù) | 15 | 3 | y |
(1)從表二的非優(yōu)秀學生中隨機選取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認為“測評結(jié)果優(yōu)秀與性別有關”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
參考數(shù)據(jù)與公式:
K2=
,其中n=a+b+c+d.
臨界值表:
P(K2>k0) | 0.05 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com