科目: 來源: 題型:
【題目】由小到大排列的一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5 , 其中每個數(shù)據(jù)都小于﹣1,則樣本1,x1 , ﹣x2 , x3 , ﹣x4 , x5的中位數(shù)為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】記所有非零向量構(gòu)成的集合為V,對于
,
∈V,
≠
,定義V(
,
)=|x∈V|x
=x
|
(1)請你任意寫出兩個平面向量
,
,并寫出集合V(
,
)中的三個元素;
(2)請根據(jù)你在(1)中寫出的三個元素,猜想集合V(
,
)中元素的關(guān)系,并試著給出證明;
(3)若V(
,
)=V(
,
),其中
≠
,求證:一定存在實數(shù)λ1 , λ2 , 且λ1+λ2=1,使得
=λ1
+λ2
.
查看答案和解析>>
科目: 來源: 題型:
【題目】對某班學生一次英語測驗的成績分析,各分數(shù)段的分布如圖(分數(shù)取整數(shù)),由此,估計這次測驗的優(yōu)秀率(不小于80分)為( ) ![]()
A.92%
B.24%
C.56%
D.5.6%
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖的程序框圖表示的算法中,輸入三個實數(shù)a,b,c,要求輸出的x是這三個數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入( ) ![]()
A.x>c
B.c>x
C.c>b
D.c>a
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,若存在常數(shù)T≠0,使得f(x)=Tf(x+T)對任意的x∈R成立,則稱函數(shù)f(x)是Ω函數(shù). (Ⅰ)判斷函數(shù)f(x)=x,g(x)=sinπx是否是Ω函數(shù);(只需寫出結(jié)論)
(Ⅱ)說明:請在(i)、(ii)問中選擇一問解答即可,兩問都作答的按選擇(i)計分
(i)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是偶函數(shù),則f(x)是周期函數(shù);
(ii)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是奇函數(shù),則f(x)是周期函數(shù);
(Ⅲ)求證:當a>1時,函數(shù)f(x)=ax一定是Ω函數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA
面ABCD,且AB=2,AD=4,
AP=4,F是線段BC的中點.
⑴ 求證:面PAF
面PDF;
⑵ 若E是線段AB的中點,在線段AP上是否存在一點G,使得EG
面PDF?若存在,求出線段AG的長度;若不存在,說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
的導(dǎo)函數(shù)為
.
⑴ 若直線
與曲線
恒相切于同一定點,求
的方程;
⑵ 若
,求證:當
時,
恒成立;
⑶ 若當
時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+ln(x+1).
(1)當a=﹣
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(3)當x∈[0,+∞)時,不等式f(x)﹣x≤0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=(x2+ax+a)e﹣x , (a為常數(shù),e為自然對數(shù)的底).
(1)當a=0時,求f′(2);
(2)若f(x)在x=0時取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x﹣2y+m=0(m為確定的常數(shù))相切,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(﹣
,0),B(
,0),銳角α的終邊與單位圓O交于點P. (Ⅰ)用α的三角函數(shù)表示點P的坐標;
(Ⅱ)當
=﹣
時,求α的值;
(Ⅲ)在x軸上是否存在定點M,使得|
|=
|
|恒成立?若存在,求出點M的橫坐標;若不存在,請說明理由.![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com