科目: 來源: 題型:
【題目】已知函數(shù)f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且﹣1≤f(﹣1)≤2,2≤f(1)≤4,求點(a,b)的集合表示的平面區(qū)域的面積;
(2)若t=2+
,(x<1且x≠0),求函數(shù)f(x)的最大值;
(3)若t=x﹣a﹣3(a∈R),不等式b2+c2﹣bc﹣3b﹣1≤f(x)≤a+4(b,c∈R)的解集為[﹣1,5],求b,c的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接“雙十一”活動,某網(wǎng)店需要根據(jù)實際情況確定經(jīng)營策略.
(1)采購員計劃分兩次購買一種原料,第一次購買時價格為a元/個,第二次購買時價格為b元/個(其中a≠b).該采購員有兩種方案:方案甲:每次購買m個;方案乙:每次購買n元.請確定按照哪種方案購買原料平均價格較小.
(2)“雙十一”活動后,網(wǎng)店計劃對原價為100元的商品兩次提價,現(xiàn)有兩種方案:方案丙:第一次提價p,第二次提價q;方案丁:第一次提價
,第二次提價
,(其中p≠q)請確定哪種方案提價后價格較高.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2017湖南長沙二模】已知橢圓
(
)的離心率為
,
分別是它的左、右焦點,且存在直線
,使
關(guān)于
的對稱點恰好是圓
(
)的一條直線的兩個端點.
(1)求橢圓
的方程;
(2)設(shè)直線
與拋物線
(
)相交于
兩點,射線
,
與橢圓
分別相交于點
,試探究:是否存在數(shù)集
,當且僅當
時,總存在
,使點
在以線段
為直徑的圓內(nèi)?若存在,求出數(shù)集
;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓曲線方程為
,兩焦點分別為F1 , F2 .
(1)若n=﹣1,過左焦點為F1且斜率為
的直線交圓錐曲線于點A,B,求△ABF2的周長.
(2)若n=4,P圓錐曲線上一點,求PF1PF2的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2017江西4月質(zhì)檢】已知橢圓
的離心率為
,且過點
.
![]()
(1)求橢圓
的方程;
(2)過點
且斜率大于0的直線
與橢圓
相交于點
,
,直線
,
與
軸相交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2017安徽馬鞍山二模】已知動圓過定點
,且在
軸上截得的弦長為4,記動圓圓心的軌跡為曲線C.
(Ⅰ)求直線
與曲線C圍成的區(qū)域面積;
(Ⅱ)點
在直線
上,點
,過點
作曲線C的切線
、
,切點分別為
、
,證明:存在常數(shù)
,使得
,并求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當a=﹣1時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(1﹣a)x+(1﹣a).a(chǎn)∈R.
(1)當a=4時,解不等式f(x)≥7;
(2)若對P任意的x∈(﹣1,+∞),函數(shù)f(x)的圖象恒在x軸上方,求實數(shù)a的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com