科目: 來源: 題型:
【題目】已知集合A={x|
>0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是直角梯形,
,
,
,
,
是等邊三角形,且側(cè)面
底面
,
分別是
,
的中點.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求平面
與平面
所成的二面角(銳角)的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,
(
為自然對數(shù)的底數(shù)).
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一個邊長為
的正三角形和半圓組成的圖形,現(xiàn)把
沿直線AB折起使得與圓所在平面垂直,已知點C是半圓的一個三等分點(靠左邊一點),點E是線段PB上的點,(1)當(dāng)點E是PB的中點時,在圓弧上找一點Q,使得
平面
;(2)當(dāng)二面角
的正切值為
時,求BE的長。
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖橢圓
的上下頂點為A、B,直線
:
,點P是橢圓上異于點A、B的任意一點,連結(jié)AP并延長交直線
于點N,連結(jié)BP并延長交直線
于點M,設(shè)AP、BP所在直線的斜率分別為
,若橢圓的離心率為
,且過點
,(1)求
的值,并求
最小值;(2)隨著點P的變化,以MN為直徑的圓是否恒過定點,若過定點,求出該定點坐標(biāo);若不過定點,請說明理由。
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=
,(a>0).
(1)當(dāng)a=2時,證明函數(shù)f(x)不是奇函數(shù);
(2)判斷函數(shù)f(x)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;
(3)若f(x)是奇函數(shù),且f(x)﹣x2+4x≥m在x∈[﹣2,2]時恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓
的離心率為
,頂點為
,且
.
![]()
(1)求橢圓
的方程;
(2)
是橢圓
上除頂點外的任意點,直線
交
軸于點
,直線
交
于點
.設(shè)
的斜率為
,
的斜率為
,試問
是否為定值?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù)f1(x)、f2(x)、h(x),如果存在實數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x)、f2(x)的和諧函數(shù).
(1)已知函數(shù)f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,試判斷h(x)是否為f1(x)、f2(x)的和諧函數(shù)?并說明理由;
(2)已知h(x)為函數(shù)f1(x)=log3x,f2(x)=log
x的和諧函數(shù),其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求實數(shù)t的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com