科目: 來源: 題型:
【題目】己知圓
的圓心在直線
上,且過點
,與直線
相切.
(
)求圓
的方程.
(
)設直線
與圓
相交于
,
兩點.求實數(shù)
的取值范圍.
(
)在(
)的條件下,是否存在實數(shù)
,使得弦
的垂直平分線
過點
,若存在,求出實數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中點,M是CE的中點,N點在PB上,且4PN=PB.
(Ⅰ)證明:平面PCE⊥平面PAB;
(Ⅱ)證明:MN∥平面PAC.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求四棱錐P﹣ABCD的體積.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面
平面
,
是等腰直角三角形,
,四邊形
是直角梯形,
,
,
,
,
分別為
,
的中點.
(I)求證:
平面
.
(II)求直線
和平面
所成角的正弦值.
(III)能否在
上找一點
,使得
平面
?若能,請指出點
的位置,并加以證明;若不能,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,PD⊥平面ABCD且PD=AD,則下列命題中錯誤的是( )![]()
A.過BD且與PC平行的平面交PA于M點,則M為PA的中點
B.過AC且與PB垂直的平面交PB于N點,則N為PB的中點
C.過AD且與PC垂直的平面交PC于H點,則H為PC的中點
D.過P、B、C的平面與平面PAD的交線為直線l,則l∥AD
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,
,點E,H分別是所在邊靠近B,D的三等分點,現(xiàn)沿著EH將矩形折成直二面角,分別連接AD,AC,CB,形成如圖所示的多面體.
![]()
(1)證明:平面BCE∥平面ADH;
(2)證明:EH⊥AC;
(3)求二面角B-AC-D的平面角的余弦值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com