科目: 來源: 題型:
【題目】已知函數(shù)
是定義在
上的奇函數(shù).
(1)求
的解析式;
(2)證明:函數(shù)
在定義域上是增函數(shù);
(3)設(shè)
是否存在正實數(shù)
使得函數(shù)
在
內(nèi)的最小值為
?若存在,求出
的值;若存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,且點
在橢圓
上.
⑴求橢圓
的標(biāo)準(zhǔn)方程;
⑵已知動直線
過點
且與橢圓
交于
兩點.試問
軸上是否存在定點
,使得
恒成立?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】2015年8月12日天津發(fā)生危化品重大爆炸事故,造成重大人員和經(jīng)濟損失.某港口組織消防人員對該港口的公司的集裝箱進行安全抽檢,已知消防安全等級共分為四個等級(一級為優(yōu),二級為良,三級為中等,四級為差),該港口消防安全等級的統(tǒng)計結(jié)果如下表所示:
![]()
現(xiàn)從該港口隨機抽取了
家公司,其中消防安全等級為三級的恰有20家.
(Ⅰ)求
的值;
(Ⅱ)按消防安全等級利用分層抽樣的方法從這
家公司中抽取10家,除去消防安全等級為一級和四級的公司后,再從剩余公司中任意抽取2家,求抽取的這2家公司的消防安全等級都是二級的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
(
)的焦距為
,且經(jīng)過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)
、
是橢圓
上兩點,線段
的垂直平分線
經(jīng)過
,求
面積的最大值(
為坐標(biāo)原點).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求函數(shù)
的圖象在點(1,
)處的切線方程;
(Ⅱ)討論函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)已知
,對于函數(shù)
圖象上任意不同的兩點
,其中
,直線
的斜率為
,記
,若
求證![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】信息科技的進步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的
,為使裁員后獲得的經(jīng)濟效益最大,該銀行應(yīng)裁員多少人?此時銀行所獲得的最大經(jīng)濟效益是多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
分別為
的中點,點
在線段
上.
(Ⅰ)求證:
平面
;
(Ⅱ)如果直線
與平面
所成的角和直線
與平面
所成的角相等,求
的值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是直角梯形,側(cè)棱
底面
,
垂直于
和
,
,
,
是棱
的中點.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求平面
與平面
所成的二面角的余弦值;
(Ⅲ)設(shè)點
是直線
上的動點,
與平面
所成的角為
,求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校要用甲、乙、丙三輛校車把教職工從老校區(qū)接到校本部,已知從老校區(qū)到校本部有兩條公路,校車走公路①時堵車的概率為
,校車走公路②時堵車的概率為p.若甲、乙兩輛校車走公路①,丙校車由于其他原因走公路②,且三輛校車是否堵車相互之間沒有影響.
(1)若三輛校車中恰有一輛校車被堵的概率為
,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛校車中被堵車輛的輛數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
為函數(shù)
圖象上一點,
為坐標(biāo)原點,記直線
的斜率
.
(1)若函數(shù)
在區(qū)間
上存在極值,求實數(shù)
的取值范圍;
(2)當(dāng)
時,不等式
恒成立,求實數(shù)
的取值范圍;
(3)求證: ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com