科目: 來(lái)源: 題型:
【題目】已知函數(shù)
是定義在
上的奇函數(shù),且當(dāng)
時(shí),
;
(1)求函數(shù)
在
上的解析式并畫出函數(shù)
的圖象(不要求列表描點(diǎn),只要求畫出草圖)
(2)(。⿲懗龊瘮(shù)
的單調(diào)遞增區(qū)間;
(ⅱ)若方程
在
上有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍。
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線的交點(diǎn),G是PB的中點(diǎn).
![]()
(1)根據(jù)三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)設(shè)
,當(dāng)
時(shí),求函數(shù)
的定義域,判斷并證明函數(shù)
的奇偶性;
(2)是否存在實(shí)數(shù)
,使得函數(shù)
在
遞減,并且最小值為1,若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos 2A-3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5
,b=5,求sin Bsin C的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
![]()
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
甲班(A方式) | 乙班(B方式) | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2-2ax+2+b(a≠0)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-2mx在[2,4]上單調(diào),求m的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對(duì)變量t與y進(jìn)行相關(guān)性檢驗(yàn),得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知雙曲線
的實(shí)軸端點(diǎn)分別為
,記雙曲線的其中一個(gè)焦點(diǎn)為
,一個(gè)虛軸端點(diǎn)為
,若在線段
上(不含端點(diǎn))有且僅有兩個(gè)不同的點(diǎn)
,使得
,則雙曲線的離心率
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,
的參數(shù)方程為
(
為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,
的極坐標(biāo)方程
.
(Ⅰ)說(shuō)明
是哪種曲線,并將
的方程化為普通方程;
(Ⅱ)
與
有兩個(gè)公共點(diǎn)
,頂點(diǎn)
的極坐標(biāo)
,求線段
的長(zhǎng)及定點(diǎn)
到
兩點(diǎn)的距離之積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】有
名男生,
名女生,在下列不同條件下,求不同的排列方法種數(shù).(最后結(jié)果化成數(shù)
字)
(1)排成前后兩排,前排
人,后排
人;
(2)全體排成一排,甲不站在排頭也不站在排尾;
(3)全體排成一排,女生必須站在一起;
(4)全體排成一排,男生不能相鄰.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com