科目: 來源: 題型:
【題目】選修4-4;坐標系與參數(shù)方程
在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).在以坐標原點為極點,
軸正半軸為極軸的極坐標中,曲線
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標方程.
(Ⅱ)求曲線
上的點到直線
的距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,我國電子商務蓬勃發(fā)展. 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關管理部門推出了針對該網(wǎng)購平臺的商品和服務的評價系統(tǒng). 從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務都滿意的交易為80次.
(Ⅰ) 根據(jù)已知條件完成下面的
列聯(lián)表,并回答能否有99%的把握認為“網(wǎng)購者對商品滿意與對服務滿意之間有關系”?
對服務滿意 | 對服務不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | |||
合計 | 200 |
(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設對商品和服務都滿意的次數(shù)為隨機變量
,求
的分布列和數(shù)學期望
.
附:![]()
(其中
為樣本容量)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù)
,其中
是新樣式單車的月產(chǎn)量(單位:件),利潤
總收益
總成本.
(1)試將自行車廠的利潤
元表示為月產(chǎn)量
的函數(shù);
(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個最高點的坐標為(
,
),由此點到相鄰最低點間的曲線與x軸交于點(
π,0),φ∈(﹣
,
).
(1)求這條曲線的函數(shù)解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
:
(
)的左右焦點分別為
,
,離心率為
,點
在橢圓
上,
,
,過
與坐標軸不垂直的直線
與橢圓
交于
,
兩點,
為
,
的中點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知點
,且
,求直線
所在的直線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運
會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】學校藝術節(jié)對同一類的
,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”;
乙說:“
作品獲得一等獎”;
丙說:“
,
兩項作品未獲得一等獎”;
丁說:“是
作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】過點
作拋物線
的兩條切線, 切點分別為
,
.
(1) 證明:
為定值;
(2) 記△
的外接圓的圓心為點
, 點
是拋物線
的焦點, 對任意實數(shù)
, 試判斷以
為直徑的圓是否恒過點
? 并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是
,乙能答對其中的8道題.規(guī)定每次考試都從備選的10道題中隨機抽出4道題進行測試,只有選中的4個題目均答對才能入選;
(Ⅰ)求甲恰有2個題目答對的概率及甲答對題目數(shù)
的數(shù)學期望與方差。
(Ⅱ)求乙答對的題目數(shù)X的分布列。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com