科目: 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為
元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
| 上一個年度未發(fā)生有責任道路交通事故 | 下浮10% |
| 上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% |
| 上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% |
| 上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% |
| 上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 |
|
|
|
|
|
|
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,
,記
為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求
的分布列與數(shù)學期望;(數(shù)學期望值保留到個位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)
的圖像在
處的切線
垂直于直線
,求實數(shù)
的值及直線
的方程;
(2)求函數(shù)
的單調區(qū)間;
(3)若
,求證: ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,且滿足
,求數(shù)列
的通項公式.勤于思考的小紅設計了下面兩種解題思路,請你選擇其中一種并將其補充完整.
思路1:先設
的值為1,根據(jù)已知條件,計算出
_________,
__________,
_________.
猜想:
_______.
然后用數(shù)學歸納法證明.證明過程如下:
①當
時,________________,猜想成立
②假設
(
N*)時,猜想成立,即
_______.
那么,當
時,由已知
,得
_________.
又
,兩式相減并化簡,得
_____________(用含
的代數(shù)式表示).
所以,當
時,猜想也成立.
根據(jù)①和②,可知猜想對任何
N*都成立.
思路2:先設
的值為1,根據(jù)已知條件,計算出
_____________.
由已知
,寫出
與
的關系式:
_____________________,
兩式相減,得
與
的遞推關系式:
____________________.
整理:
____________.
發(fā)現(xiàn):數(shù)列
是首項為________,公比為_______的等比數(shù)列.
得出:數(shù)列
的通項公式
____,進而得到
____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩家商場對同一種商品展開促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉動如圖所示轉盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為
,邊界忽略不計)即為中獎.
乙商場:從裝有4個白球,4個紅球和4個籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個不同顏色的球,即為中獎.
![]()
(Ⅰ)試問:購買該商品的顧客在哪家商場中獎的可能性大?說明理由;
(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個數(shù)為
,求
的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓
.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且
(O為坐標原點),求m的值;
(3)在(2)的條件下,求以
為直徑的圓的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了參加師大附中第30界田徑運動會的開幕式,高三年級某6個班聯(lián)合到集市購買了6根竹竿,作為班旗的旗桿之用,它們的長度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(Ⅰ)若從中隨機抽取兩根竹竿,求長度之差不超過0.5米的概率;
(Ⅱ)若長度不小于4米的竹竿價格為每根10元,長度小于4米的竹竿價格為每根
元.從這6根竹竿中隨機抽取兩根,若期望這兩根竹竿的價格之和為18元,求
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com