科目: 來源: 題型:
【題目】已知橢圓
的右焦點
,橢圓
的左,右頂點分別為
.過點
的直線
與橢圓交于
兩點,且
的面積是
的面積的3倍.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
與
軸垂直,
是橢圓
上位于直線
兩側的動點,且滿足
,試問直線
的斜率是否為定值,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合P={x|-2≤x≤10},Q={x|1-m≤x≤1+m}.
(1)求集合RP;
(2)若PQ,求實數(shù)m的取值范圍;
(3)若P∩Q=Q,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出
與銷售額
之間有如下的對應數(shù)據(jù):
| 2 | 4 | 5 | 6 | 8 |
| 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;并說明銷售額y與廣告費用支出x之間是正相關還是負相關?
(2)請根據(jù)上表提供的數(shù)據(jù),求回歸直線方程
;
(3)據(jù)此估計廣告費用為10時,銷售收入
的值.
(參考公式:
,).
查看答案和解析>>
科目: 來源: 題型:
【題目】羅源濱海新城建一座橋,兩端的橋墩已建好,這兩墩相距
米,余下工程只需建兩端橋墩之間的橋面和橋墩,經(jīng)預測,一個橋墩的工程費用為32萬元,距離為x米的相鄰兩墩之間的橋面工程費用為
萬元.假設橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為
萬元.
(1)試寫出
關于
的函數(shù)關系式;
(2)當
=96米,需新建多少個橋墩才能使余下工程的費用
最?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,為了保護環(huán)境,實現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設計才能使公園占地面積最大,求出最大面積.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】【2014山東.理15】已知函數(shù)
,對函數(shù)
,定義
關于
的對稱函數(shù)為函數(shù)
,
滿足:對于任意
,兩個點
關于點
對稱,若
是
關于
的“對稱函數(shù)”,且
恒成立,則實數(shù)
的取值范圍是_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓
的直角坐標方程;
(2)設圓
與直線
交于點
,若點
的坐標為
,求
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)若
對
恒成立,求實數(shù)
的取值范圍;
(2)是否存在整數(shù)
,使得函數(shù)
在區(qū)間
上存在極小值,若存在,求出所有整數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2017屆河北省正定中學高三上學期第三次月考(期中)數(shù)學(理)】在平面直角坐標系中,當
不是原點時,定義
的“伴隨點”為
;當
是原點時,定義
的“伴隨點”為它自身,平面曲線
上所有點的“伴隨點”所構成的曲線
定義為曲線
的“伴隨曲線”,現(xiàn)有下列命題:
①若點
的“伴隨點”是點
,則點
的“伴隨點”是點
;
②若曲線
關于
軸對稱,則其“伴隨曲線”
關于
軸對稱;
③單位圓的“伴隨曲線”是它自身;
④一條直線的“伴隨曲線”是一條直線.
其中真命題的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,已知AB⊥側面BB1C1C,AB=BC=1,BB1=2,∠BCC1=
.
(1)求證:C1B⊥平面ABC;
設
(0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,
試求λ的值.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com