科目: 來源: 題型:
【題目】已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)當(dāng)|OP|=|OM|時,求l的方程及△POM的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形
的兩條對角線
相交于
,現(xiàn)用五種顏色(其中一種為紅色)對圖中四個三角形
進(jìn)行染色,且每個三角形用一種顏色圖染.
(1)若必須使用紅色,求四個三角形
中有且只有一組相鄰三角形同色的染色方法的種數(shù);
(2)若不使用紅色,求四個三角形
中所有相鄰三角形都不同色的染色方法的種數(shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系下,曲線
的方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線
和曲線
的交點(diǎn)為
、
,求
.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
![]()
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚?/span>
列聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
參考公式與臨界值表:
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
。
![]()
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
![]()
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點(diǎn),OD⊥PC.
![]()
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知長方形ABCD中,AB=1,AD=
,F(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.
![]()
(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請說明理由.
(2)當(dāng)四面體ABCD的體積最大時,求二面角ACDB的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在長方體ABCDA1B1C1D1中,AB=AA1=1,E為BC中點(diǎn).
![]()
(1)求證:C1D⊥D1E;
(2)在棱AA1上是否存在一點(diǎn)M,使得BM∥平面AD1E?若存在,求
的值,若不存在,說明理由;
(3)若二面角B1AED1的大小為90°,求AD的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com