科目: 來源: 題型:
【題目】某志愿者到某山區(qū)小學(xué)支教,為了解留守兒童的幸福感,該志愿者對某班40名學(xué)生進(jìn)行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強(qiáng)).
![]()
(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成
列聯(lián)表,并判斷能否有
的把握認(rèn)為孩子的幸福感強(qiáng)與是否是留守兒童有關(guān)?
![]()
(Ⅱ)從15個留守兒童中按幸福感強(qiáng)弱進(jìn)行分層抽樣,共抽取5人,又在這5人中隨機(jī)抽取2人進(jìn)行家訪,求這2個學(xué)生中恰有一人幸福感強(qiáng)的概率.
參考公式:
; 附表:
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為
,求事件“
均不小于25”的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
.
(參考公式:
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)
,過點(diǎn)
動直線
與圓
交與點(diǎn)
兩點(diǎn).
(1)若
,求直線
的傾斜角;
(2)求線段
中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直三棱柱
中,
,
,
是棱
上的一點(diǎn),
分別為
的中點(diǎn).
![]()
(1)求證:
∥平面
;
(2)當(dāng)
為
的中點(diǎn)時,求三棱錐
的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個盒子里裝有6張卡片,上面分別寫著如下定義域為
的函數(shù):
,
,
,
,
,
.
(1)現(xiàn)在從盒子中任意取兩張卡片,記事件
為“這兩張卡片上函數(shù)相加,所得新函數(shù)是奇函數(shù)”,求事件
的概率;
(2)從盒中不放回逐一抽取卡片,若取到一張卡片上的函數(shù)是偶函數(shù)則停止抽取,否則繼續(xù)進(jìn)行,記停止時抽取次數(shù)為
,寫出
的分布列,并求其數(shù)學(xué)期望
.
查看答案和解析>>
科目: 來源: 題型:
【題目】在簡單隨機(jī)抽樣中,某一個個體被抽到的可能性( )
A.第一次被抽到的可能性最大B.第一次被抽到的可能性最小
C.每一次被抽到的可能性相等D.與抽取幾個樣本有關(guān)
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線
的參數(shù)方程式
(
是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,且取相同的長度單位建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線
的普通方程與圓
的直角坐標(biāo)方程;
(2)設(shè)圓
與直線
交于
、
兩點(diǎn),若
點(diǎn)的直角坐標(biāo)為
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知五邊形
由直角梯形
與直角△
構(gòu)成,如圖1所示,
,
,
,且
,將梯形
沿著
折起,形成如圖2所示的幾何體,且使平面![]()
平面
.
![]()
(1)在線段
上存在點(diǎn)
,且
,證明:
平面
;
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系
中,以原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
.
(1)求曲線
的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)
是曲線
上的動點(diǎn),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com