欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  252389  252397  252403  252407  252413  252415  252419  252425  252427  252433  252439  252443  252445  252449  252455  252457  252463  252467  252469  252473  252475  252479  252481  252483  252484  252485  252487  252488  252489  252491  252493  252497  252499  252503  252505  252509  252515  252517  252523  252527  252529  252533  252539  252545  252547  252553  252557  252559  252565  252569  252575  252583  266669 

科目: 來源: 題型:選擇題

2.一項(xiàng)實(shí)驗(yàn)中獲得的一組關(guān)于變量y,t之間的數(shù)據(jù)整理后得到如圖所示的散點(diǎn)圖.下列函數(shù)中可以
近視刻畫y與t之間關(guān)系的最佳選擇是(  )
A.y=atB.y=logatC.y=at3D.y=a$\sqrt{t}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=log22x,g(x)=$\root{3}{{x}^{3}}$B.f(x)=$\sqrt{{x}^{2}}$,g(x)=x
C.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$D.f(x)=lnx2,g(x)=2lnx

查看答案和解析>>

科目: 來源: 題型:解答題

20.(I)求|2x-1|+|2x+3|<5的解集;
(II)設(shè)a,b,c均為正實(shí)數(shù),試證明不等式$\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}≥\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}$,并說明等號(hào)成立的條件.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,在Rt△ABC中,∠C=90°,B E平分∠A BC交 AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB,且${A}D=2\sqrt{3}$,AE=6.
(I)判斷直線 AC與△BDE的外接圓的位置關(guān)系并說明理由;
(II)求EC的長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=1.
(I)若直線l過點(diǎn) A(4,0),且被圓C1截得的弦長(zhǎng)為2$\sqrt{3}$,求直線l的方程;
(II)若從圓C1的圓心發(fā)出一束光線經(jīng)直線x-y-3=0反射后,反射線與圓C2有公共點(diǎn),試求反射線所在直線的斜率的范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

17.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右頂點(diǎn)為A,上、下頂點(diǎn)分別為 B2、B1,左、右焦點(diǎn)分別是F1、F2,若直線 B1F2與直線 AB2交于點(diǎn) P,且∠B1PA為銳角,則離心率的范圍是$0<e<\frac{{-1+\sqrt{5}}}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知球O的體積為36π,則球的內(nèi)接正方體的棱長(zhǎng)是$2\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知等差數(shù)列{an},若a1+a2+a3=-24,a18+a19+a20=78,則S20=180.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知直線l1:ax+y+3=0,l2:x+(2a-3)y=4,l1⊥l2,則a=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),f′(x),是它的導(dǎo)函數(shù),且恒有sinx•f′(x)>cosx•f(x)成立,則( 。
A.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)B.$\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$)C.$\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$)D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案