欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  251703  251711  251717  251721  251727  251729  251733  251739  251741  251747  251753  251757  251759  251763  251769  251771  251777  251781  251783  251787  251789  251793  251795  251797  251798  251799  251801  251802  251803  251805  251807  251811  251813  251817  251819  251823  251829  251831  251837  251841  251843  251847  251853  251859  251861  251867  251871  251873  251879  251883  251889  251897  266669 

科目: 來源: 題型:解答題

4.直線Ln:y=x-$\sqrt{2n}$與圓Cn:x2+y2=2an+n交于不同的兩點(diǎn)An,Bn.?dāng)?shù)列{an}滿足:a1=1,a n+1=$\frac{1}{4}$|AnBn|2
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)若bn=$\left\{\begin{array}{l}{2n-1(n為奇數(shù))}\\{{a}_{n}(n為偶數(shù))}\end{array}\right.$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

3.△ABC為等腰直角三角形,OA=1,OC為斜邊AB上的高,P為線段OC的中點(diǎn),則$\overrightarrow{AP}•\overrightarrow{OP}$=$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.函數(shù)f(x)=3x|${log_{\frac{1}{3}}}$x|-1的零點(diǎn)個(gè)數(shù)為2•

查看答案和解析>>

科目: 來源: 題型:選擇題

1.要得到函數(shù)g(x)=$sin(2x+\frac{π}{6})$,只需將f(x)=cos2x的圖象( 。
A.左移$\frac{π}{3}$個(gè)單位B.右移$\frac{π}{3}$個(gè)單位C.左移$\frac{π}{6}$個(gè)單位D.右移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x.
(1)求函數(shù)f(x)的極值;
(2)過點(diǎn)P(1,n)(n≠-2)作曲線y=f(x)的切線,問:實(shí)數(shù)n滿足什么樣的取值范圍,過點(diǎn)P可以作出三條切線?

查看答案和解析>>

科目: 來源: 題型:解答題

19.?dāng)?shù)列{an}的首項(xiàng)al=1,且對(duì)任意n∈N*,an與an+1恰為方程x2-bnx+2n=0的兩個(gè)根.
(1)求數(shù)列(an}和數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:解答題

18.Sn為數(shù)列{an}的前n項(xiàng)和,已知Sn=$\frac{1}{2}•{3^n}+\frac{3}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知f(x)在R上可導(dǎo),且滿足(x-2)f′(x)≥0,則f(-2015)+f(2015)≥(大于等于)2f(2)(填兩個(gè)數(shù)值的大小關(guān)系:>、=、<、≥、≤).

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若$\sqrt{x}+\sqrt{y}≤a\sqrt{x+y}$(x>0,y>0)恒成立,則a的最小值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z=(x-1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為( 。
A.$\frac{3}{4}+\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{1}{2}-\frac{1}{π}$D.$\frac{1}{2}+\frac{1}{π}$

查看答案和解析>>

同步練習(xí)冊(cè)答案