欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關習題
 0  247151  247159  247165  247169  247175  247177  247181  247187  247189  247195  247201  247205  247207  247211  247217  247219  247225  247229  247231  247235  247237  247241  247243  247245  247246  247247  247249  247250  247251  247253  247255  247259  247261  247265  247267  247271  247277  247279  247285  247289  247291  247295  247301  247307  247309  247315  247319  247321  247327  247331  247337  247345  266669 

科目: 來源: 題型:解答題

13.如圖:在邊長為6米的等邊△ABC鋼板內,作一個△DEF,使得△DEF的三邊到△ABC所對應的三邊之間的距離均x(0<x<$\frac{2}{3}$$\sqrt{3}$)米,過點D分別向AB,AC邊作垂線,垂足依次為G,H;過點E分別向AB,BC邊作垂線,垂足依次為M,N;過點F分別向BC,AC邊作垂線,垂足依次為R,S.接著在△ABC的三個內角處,分別沿DG,DH、EM,EN、FR,F(xiàn)S進行切割,割去的三個全等的小四邊形分別為AGDH、BMEN、CRFS.然后把矩形GDEM、NEFR、SFDH分別沿DE、EF、FD向上垂直翻折,并對翻折后的鋼板進行無縫焊接(注:切割和無縫焊接過程中的損耗和費用忽略不計),從而構成一個無蓋的正三棱柱蓄水池.
(1)若此無蓋的正三棱柱蓄水池的側面和底面造價均為a(a>0)萬元/米2,求此無蓋的正三棱柱蓄水池總造價的最小值;
(2)若此無蓋的正三棱柱蓄水池的體積為V米3,求體積V的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.在△AOB中,OA=OB=2,
(1)如圖①:若AO⊥OB,點P為△AOB所在平面上的一個動點,且滿足PO=3,求$\overrightarrow{PB}$•$\overrightarrow{OA}$的取值范圍;
(2)如圖②:若|$\overrightarrow{OA}$+$\overrightarrow{OB}$|≤$\frac{\sqrt{3}}{3}$|$\overrightarrow{AB}$|,求$\overrightarrow{OA}$與$\overrightarrow{OB}$所成夾角的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知$\overrightarrow{m}$=(sinωx,-1),$\overrightarrow{n}$=(1,-$\sqrt{3}$cosωx)(其中x∈R,ω>0),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,且函數f(x)圖象的某個最高點到其相鄰的最低點之間的距離為5,
(1)求函數f(x)的單調遞增區(qū)間;
(2)若f($\frac{3θ}{π}$)=$\frac{6}{5}$(其中θ∈(-$\frac{5π}{6}$,$\frac{π}{6}$),則求f($\frac{6θ}{π}$+1)的取值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.若函數f(x)=$\frac{1}{2}$|x+a|+b(x∈R)有兩個零點分別為x1=0,x2=4,則a+b的值為-3.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知f(x)=(1+x)m,g(x)=(1+5x)n(m,n∈N*
(1)若m=4,n=5時,求f(x)•g(x)的展開式中含x2的項;
(2)若h(x)=f(x)+g(x),且h(x)的展開式中含x的項的系數為24,那么當m,n為何值時,h(x)的展開式中含x2的項的系數取得最小值?
(3)若(1+5x)n(n≤10,n∈N*)的展開式中,倒數第2、3、4項的系數成等差數列,求(1+5x)n的展開式中系數最大的項.

查看答案和解析>>

科目: 來源: 題型:解答題

8.某同學參加4門學科的學業(yè)水平考試,假設該同學第一門學科取得優(yōu)秀成績的概率為$\frac{2}{3}$,第二門學科取得優(yōu)秀成績的概率為$\frac{4}{5}$,第三、第四門學科取得優(yōu)秀成績的概率分別為m,n(m>n),且不同學科是否取得優(yōu)秀成績相互獨立,記ξ為該同學取得優(yōu)秀成績的課程數,其分布列為如下表:
ξ01234
p$\frac{1}{120}$xyz$\frac{1}{5}$
(1)求該生至少有1門課程取得優(yōu)秀成績的概率;
(2)求m,n的值;
(3)求數學期望Eξ.

查看答案和解析>>

科目: 來源: 題型:解答題

7.(1)在長度為a的線段AB上任取一點M,求點M到AB中點的距離不小于$\frac{a}{4}$的概率;
(2)在邊長為a的正三角形ABC內任取一點M,求點M到其中心點的距離大于其內切圓半徑的概率;
(3)在棱長為a的正四面體P-ABC內任取一點M,求點M到其中心點的距離小于其內切球半徑的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,直線C1的參數方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}$(其中t為參數),曲線C2的極坐標方程為ρsin2θ=4cosθ,
(1)求當α=$\frac{π}{6}$時直線C1的普通方程及曲線C2的直角坐標方程;
(2)設F(1,0),直線C1和曲線C2相交于兩點A,B,若AF=2FB,求AB的長.

查看答案和解析>>

科目: 來源: 題型:解答題

5.有7名同學站成一排,問:
(1)甲同學不能站在正中間,有多少種排法?
(2)甲、乙兩名同學不站在兩端,有多少種排法?
(3)甲、乙兩名同學不能相鄰,有多少種排法?
(4)甲同學必須站在乙同學的左邊(不一定相鄰),有多少種排法?
(注:本題需必要的解題過程,且最后結果要用數字作答)

查看答案和解析>>

科目: 來源: 題型:填空題

4.曲線$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ為參數)上的點到直線$\left\{\begin{array}{l}x=2t\\ y=1+t\end{array}\right.$(t為參數)的距離的最大值為$\frac{2(\sqrt{5}+\sqrt{10})}{5}$.

查看答案和解析>>

同步練習冊答案