欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  246527  246535  246541  246545  246551  246553  246557  246563  246565  246571  246577  246581  246583  246587  246593  246595  246601  246605  246607  246611  246613  246617  246619  246621  246622  246623  246625  246626  246627  246629  246631  246635  246637  246641  246643  246647  246653  246655  246661  246665  246667  246671  246677  246683  246685  246691  246695  246697  246703  246707  246713  246721  266669 

科目: 來源: 題型:解答題

19.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的頂點為A1,A2,B1B2,焦點為F1,F(xiàn)2,a2+b2=7
S${\;}_{?{A}_{1}{B}_{1}{A}_{2}{B}_{2}}$=2S${\;}_{?{B}_{1}{F}_{1}{B}_{2}{F}_{2}}$
(1)求橢圓C的方程;
(2)設(shè)直線m過P(1,1),且與橢圓相交于A,B兩點,當(dāng)P是A,B的中點時,求直線m的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根x1,x2,則點P(x1,x2)( 。
A.必在圓x2+)y2=2上B.必在圓x2+y2=2內(nèi)
C.必在圓x2+y2=2外D.以上三種情況都有可能

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知兩點F1(-1,0),F(xiàn)2(1,0),點P在以F1,F(xiàn)2為焦點的橢圓C,且|PF1|,|F1F2|,|PF2|構(gòu)成等差數(shù)列.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m(|k|≤1)(m>0)與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l,當(dāng)|F1M|+|F2N|最大時,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如果數(shù)列{an}同時滿足以下兩個條件:(1)各項均不為0;(2)存在常數(shù)k,對任意n∈N*,an+12=anan+2+k都成立.則稱這樣的數(shù)列{an}為“k類等比數(shù)列”.
(Ⅰ)若數(shù)列{an}滿足an=3n+1,證明數(shù)列{an}為“k類等比數(shù)列”,并求出相應(yīng)的k;
(Ⅱ)若數(shù)列{an}為“3類等比數(shù)列”,且滿足a1=1,a2=2,問是否存在常數(shù)l,使得an+an+2=lan+1對于任意n∈N*都成立?若存在,求出l;若不存在,請舉出反例.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知拋物線C:y2=4x,O為坐標(biāo)原點,F(xiàn)為其焦點,當(dāng)點P在拋物線C上運動時,$\frac{|PO|}{|PF|}$的最大值為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別為F1、F2,若以F1F2為直徑的圓與橢圓有交點,則橢圓離心率e的取值范圍為(  )
A.[$\frac{1}{2}$,1)B.[$\frac{{\sqrt{2}}}{2}$,1)C.(0,$\frac{1}{2}$]D.(0,$\frac{{\sqrt{2}}}{2}}$]

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點為F(-1,0),O為坐標(biāo)原點,點G(1,$\frac{{\sqrt{2}}}{2}}$)在橢圓上,過點F的直線l交橢圓于不同的兩點 A、B.
(1)求橢圓C的方程;
(2)求弦AB的中點M的軌跡方程;
(3)設(shè)過點F且不與坐標(biāo)軸垂直的直線交橢圓于A、B兩點,P為x軸上一點,若PA、PB是菱形的兩條鄰邊,求點P橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)及內(nèi)部面積為S=πab,A1,A2是長軸的兩個頂點,B1,B2是短軸的兩個頂點,在橢圓上或橢圓內(nèi)部隨機(jī)取一點 P,給出下列命題:
①△PA1A2為鈍角三角形的概率為1;
②△PB1B2為鈍角三角形的概率為$\frac{a}$;
③△PA1A2為鈍角三角形的概率為$\frac{a}$; 
④△PB1B2為銳角三角形的概率為$\frac{a-b}{a}$.
其中正確的命題有①②④.(填上你認(rèn)為所有正確的命題序號)

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知點P是橢圓$\frac{x^2}{13}+\frac{y^2}{5}=1$(x≠0,y≠0)上的動點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點,O是坐標(biāo)原點,若M是以線段PF1為直徑的圓上一點,且M到∠F1PF2兩邊的距離相等,則$|{\overrightarrow{{O}{M}}}|$的取值范圍是( 。
A.(0,$\sqrt{5}$)B.(0,2$\sqrt{2}$)C.[$\sqrt{5}$,$\sqrt{13}$)D.(3,2$\sqrt{5}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知O為坐標(biāo)原點,F(xiàn)為拋物線C:y2=4$\sqrt{6}$x的焦點,P為C上一點,若△POF的面積為6$\sqrt{3}$,則|PF|=( 。
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$4\sqrt{6}$D.$8\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案