欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  230898  230906  230912  230916  230922  230924  230928  230934  230936  230942  230948  230952  230954  230958  230964  230966  230972  230976  230978  230982  230984  230988  230990  230992  230993  230994  230996  230997  230998  231000  231002  231006  231008  231012  231014  231018  231024  231026  231032  231036  231038  231042  231048  231054  231056  231062  231066  231068  231074  231078  231084  231092  266669 

科目: 來源: 題型:解答題

9.在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=4,AB=4$\sqrt{3}$,∠CDA=120°,點N在線段PB上,且PN=2.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,以AB為直徑的圓O與以N為圓心,半徑為1的圓一個交點為Q,延長AB至點P,過點P作兩圓的切線,分別切于M,N兩點,已知AB=4.
(1)證明:AN=PN;
(2)求QN的長.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若函數(shù)f(x)=xlnx-ax3+$\frac{1}{2}$x2-x存在極值,則實數(shù)a的取值范圍是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,0]C.(-∞,1)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知曲線C的極坐標(biāo)方程是ρ-4sinθ=0.以極點為原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l過點M(1,0),傾斜角為$\frac{3π}{4}$.
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A、B兩點,求|MA|+|MB|.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=-x2+alnx(a∈R).
(Ⅰ)當(dāng)a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=f(x)-2x+2x2,討論函數(shù)g(x)的單調(diào)性;
(Ⅲ)若(Ⅱ)中函數(shù)g(x)有兩個極值點x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,圓O的直徑AB=10,C為圓上一點,BC=6.過C作圓O的切線l,AD⊥l于點D,且交圓O于點E,求DE長.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,已知D點在⊙O直徑BC的延長線上,DA切⊙O于A點,DE是∠ADB的平分線,交AC于F點,交AB于E點.
(Ⅰ)求∠AEF的度數(shù);
(Ⅱ)若AB=AD,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P.
(Ⅰ)若PD=8,CD=1,PO=9,求⊙O的半徑;
(Ⅱ)若E為⊙O上的一點,$\widehat{AE}=\widehat{AC}$,DE交AB于點F,求證:PF•PO=PA•PB.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(其中t為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(4cosθ+3sinθ)-m=0(其中m為常數(shù)).
(1)若直線l與曲線C恰好有一個公共點,求實數(shù)m的值;
(2)若m=4,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,ABCD是邊長為2的菱形,且∠DAB=60°,PC=4,PA=2,E是PA的中點,平面PAC⊥平面ABCD.
(Ⅰ)求證:PC∥平面BDE;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案