欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  229938  229946  229952  229956  229962  229964  229968  229974  229976  229982  229988  229992  229994  229998  230004  230006  230012  230016  230018  230022  230024  230028  230030  230032  230033  230034  230036  230037  230038  230040  230042  230046  230048  230052  230054  230058  230064  230066  230072  230076  230078  230082  230088  230094  230096  230102  230106  230108  230114  230118  230124  230132  266669 

科目: 來源: 題型:填空題

14.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(0≤θ<2π).M是曲線C上的動點,N(0,-1),則MN的最小值為$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.在△ABC中,內(nèi)角A,B,C所對的邊長分別為a,b,c且滿足$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$,若B=$\frac{π}{6}$,BC邊上中線AM=$\sqrt{7}$,則△ABC的面積為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

12.命題“存在x0>1,使得${x}_{0}^{2}$-x0+2016>0”的否定是?x>1,x2-x+2016≤0.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.下列命題中正確命題的個數(shù)是( 。
(1)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p;
(2)在區(qū)間[0,π]上隨機(jī)取一個數(shù),則事件“tanxcosx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$;
(3)兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r越接近1;
(4)f(x)=|sinx|+|cosx|,則f(x)的最小正周期是π.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目: 來源: 題型:選擇題

10.直線l與圓x2+y2+2x-4y+a=0(a<3)交于A,B兩點,且弦AB的中點為(0,1),則直線l的方程是(  )
A.y=-2x+1B.y=2x+1C.y=-x+1D.y=x+1

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和Sn滿足Sn=$\frac{{n}^{2}+n}{2}$(n∈N+).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an•3an(n∈N+),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

8.根據(jù)如圖所示的程序語句,若輸入的值為3,則輸出的y值為2.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.在平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿BD將四邊形折起成直二面角A-BD-C,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,則三棱錐A-BCD的外接球的半徑為( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知x∈R,命題“若x2>0,則x>0”的逆命題、否命題和逆否命題中,正確命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知a,b為實數(shù).
(Ⅰ)若a>0,b>0,求證:(a+b+$\frac{1}{a}$)(a2+$\frac{1}$+$\frac{1}{{a}^{2}}$)≥9;
(Ⅱ)若|a|<1,|b|<1,求證:|1-ab|>|a-b|.

查看答案和解析>>

同步練習(xí)冊答案