欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習題
 0  229273  229281  229287  229291  229297  229299  229303  229309  229311  229317  229323  229327  229329  229333  229339  229341  229347  229351  229353  229357  229359  229363  229365  229367  229368  229369  229371  229372  229373  229375  229377  229381  229383  229387  229389  229393  229399  229401  229407  229411  229413  229417  229423  229429  229431  229437  229441  229443  229449  229453  229459  229467  266669 

科目: 來源: 題型:選擇題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)短軸的兩個端點為A、B,點C為橢圓上異于A、B的一點,直線AC與直線BC的斜率之積為-$\frac{1}{4}$,則橢圓的離心率為(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目: 來源: 題型:填空題

6.A、B兩點到平面α的距離分別是3cm、5cm,點M是AB的中點,則M點到平面α的距離是4或1.

查看答案和解析>>

科目: 來源: 題型:填空題

5.過拋物線y2=2px(p>0)的焦點F,且傾斜角為$\frac{π}{4}$的直線與拋物線交于A,B兩點,若弦AB的垂直平分線經(jīng)過點(0,2),則p等于$\frac{4}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知點P(a,b)是拋物線y=$\frac{1}{20}{x}^{2}$上的一點,焦點為F,若|PF|=25,則|ab|=( 。
A.400B.360C.200D.100

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和最大值;
(2)若兩不等正數(shù)m,n滿足mn=nm,函數(shù)f(x)的導函數(shù)為f′(x),求證:f′($\frac{m+n}{2}$)<0.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.設函數(shù)y=f(x)在區(qū)間(a,b)上的導函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導函數(shù)為f″(x),若在區(qū)間(a,b)上f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凹函數(shù)”;已知f(x)=-$\frac{1}{12}$x${\;}^{4}+\frac{m}{6}{x}^{3}+\frac{3}{2}{x}^{2}$在(1,3)上為“凹函數(shù)”,則實數(shù)m的取值范圍是(  )
A.[2,+∞)B.[$\frac{31}{9}$,5]C.(2,+∞)D.($\frac{31}{9}$,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-4lnx,g(x)=-2x2+12x.
(1)求f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(3)若函數(shù)f(x)與g(x)在區(qū)間(a,a+1)上均為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

20.己知函數(shù)f(x)=-$\frac{1}{3}{x^3}+{x^2}$,g(x)=f (x)+f′(x),討論g(x)的單調(diào)性,并求g(x)在區(qū)間[1,2]上的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.平面直角坐標系xOy中,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點為F,離心率為$\frac{{\sqrt{2}}}{2}$,過點F且垂直于長軸的弦長為$\sqrt{2}$.
(I)求橢圓C的標準方程;
(Ⅱ)設點A,B分別是橢圓的左、右頂點,若過點P(-2,0)的直線與橢圓相交于不同兩點M,N.
(i)求證:∠AFM=∠BFN;
(ii)求△MNF面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,且過點$({1,\frac{3}{2}})$.若點M(x0,y0)在橢圓C上,則點$N({\frac{x_0}{a},\frac{y_0}})$稱為點M的一個“橢點”.
(I)求橢圓C的標準方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點,且A,B兩點的“橢點”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標原點,試判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

同步練習冊答案