欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  227907  227915  227921  227925  227931  227933  227937  227943  227945  227951  227957  227961  227963  227967  227973  227975  227981  227985  227987  227991  227993  227997  227999  228001  228002  228003  228005  228006  228007  228009  228011  228015  228017  228021  228023  228027  228033  228035  228041  228045  228047  228051  228057  228063  228065  228071  228075  228077  228083  228087  228093  228101  266669 

科目: 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|x-1|+$\frac{1}{2}$|x-3|.
(1)求不等式f(x)>4的解集;
(2)若不等式f(x)$≤a(x+\frac{1}{2})$的解集非空,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.試用二重積分性質(zhì)求下列極限
$\underset{lim}{n→∞}$$\frac{1}{{n}^{3}}$$\underset{∬}{D}$[$\sqrt{{x}^{2}+{y}^{2}}$]dσ.
這里D是圓域x2+y2≤n2,n是正整數(shù),[$\sqrt{{x}^{2}+{y}^{2}}$]是不是大于$\sqrt{{x}^{2}+{y}^{2}}$的最大正整數(shù).
(已知12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$)

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知等比數(shù)列{an}的前3項(xiàng)和為26,積為216.求等比數(shù)列{an}的公比q,并寫出前3項(xiàng).

查看答案和解析>>

科目: 來源: 題型:解答題

15.求函數(shù)y=cos2x+sinx;x∈[$\frac{π}{4},\frac{3π}{4}$]的值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)兩條相鄰的對(duì)稱軸之間的距離為$\frac{π}{2}$,若其圖象向右平移$\frac{π}{3}$個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)(  )
A.關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱B.關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱
C.關(guān)于直線x=$\frac{5π}{12}$對(duì)稱D.關(guān)于直線x=$\frac{π}{12}$對(duì)稱

查看答案和解析>>

科目: 來源: 題型:填空題

13.若正數(shù)m,n滿足m+n=6,則$\frac{1}{m}$$+\frac{4}{n}$的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知數(shù)列{an}的前n項(xiàng)為Sn,且a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an,則數(shù)列{an}的前14項(xiàng)和等于$\frac{2047}{1024}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在數(shù)列{an}中,已知a1=2,an=2+an-1(n≥2,n∈N*).
(1)試寫出a2,a3,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:解答題

10.在數(shù)列{an}中,若an+1是an和an+2的等差中項(xiàng),數(shù)列{an}是否是等差數(shù)列?說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.如果復(fù)數(shù)z=$\frac{3-bi}{2+i}$(b∈R)的實(shí)部和虛部相等,則|z|等于( 。
A.3$\sqrt{2}$B.2$\sqrt{2}$C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案