欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  224589  224597  224603  224607  224613  224615  224619  224625  224627  224633  224639  224643  224645  224649  224655  224657  224663  224667  224669  224673  224675  224679  224681  224683  224684  224685  224687  224688  224689  224691  224693  224697  224699  224703  224705  224709  224715  224717  224723  224727  224729  224733  224739  224745  224747  224753  224757  224759  224765  224769  224775  224783  266669 

科目: 來源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)(2,$\sqrt{2}$)在C上.
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l過點(diǎn)P(0,1),當(dāng)l繞點(diǎn)P旋轉(zhuǎn)的過程中,與橢圓C有兩個(gè)交點(diǎn)A,B,求線段AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:4x2+y2=16
(1)求橢圓C的長軸長和短軸長    
(2)求橢圓C的焦點(diǎn)坐標(biāo)和離心率
(3)直線l:y=-2x+4與橢圓C相交于A,B兩點(diǎn),求AB的長.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓C的中心在坐標(biāo)原點(diǎn),離心率為$\frac{1}{2}$,且它的短軸端點(diǎn)恰好是雙曲線$\frac{y^2}{8}-\frac{x^2}{4}=1$的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,已知直線x=2與橢圓C相交于兩點(diǎn)P,Q,點(diǎn)A,B是橢圓C上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且總滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值?若是,請求出此定值.若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.橢圓25x2+16y2=1的焦點(diǎn)坐標(biāo)是( 。
A.(±3,0)B.(±$\frac{1}{3}$,0)C.(±$\frac{3}{20}$,0)D.(0,±$\frac{3}{20}$)

查看答案和解析>>

科目: 來源: 題型:解答題

1.橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2),過P點(diǎn)的弦恰好以P點(diǎn)為中點(diǎn),則求此弦所在的直線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)為F1、F2,橢圓C上的點(diǎn)$P(\frac{{2\sqrt{6}}}{3},\frac{{\sqrt{3}}}{3})$滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)自定點(diǎn)Q(0,-2)作一條直線l與橢圓C交于不同的兩點(diǎn)A、B(點(diǎn)B在點(diǎn)A的下方),記$λ=\frac{{|\overrightarrow{QB}|}}{{|\overrightarrow{QA}|}}$,求λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知方程$\frac{|{x}^{2}-1|}{x-1}$-kx+2=0恰有兩個(gè)根,則實(shí)數(shù)k的取值范圍是(0,1)∪(1,4).

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,已知M(x0,y0)是橢圓C:$\frac{x^2}{6}+\frac{y^2}{3}=1$上的任一點(diǎn),從原點(diǎn)O向圓M:${({x-{x_0}})^2}+{({y-{y_0}})^2}=2$作兩條切線,分別交橢圓于點(diǎn)P、Q.
(1)若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1k2為定值;
(2)試問B=OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知橢圓C的方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線x=4與直線PA、PB分別交于M、N兩點(diǎn),若D(7,0),則過D、M、N三點(diǎn)的圓必過x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為(1,0).

查看答案和解析>>

科目: 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點(diǎn)F(1,0),點(diǎn)P在橢圓C上,且在第一象限內(nèi),直線PQ與圓O:x2+y2=b2相切于點(diǎn)M.
(1)求橢圓C的方程;
(2)求|PM|•|PF|的取值范圍;
(3)若OP⊥OQ,求點(diǎn)Q的縱坐標(biāo)t的值.

查看答案和解析>>

同步練習(xí)冊答案