科目: 來源: 題型:解答題
設(shè)橢圓C1:
的右焦點為F,P為橢圓上的一個動點.
(1)求線段PF的中點M的軌跡C2的方程;
(2)過點F的直線l與橢圓C1相交于點A、D,與曲線C2順次相交于點B、C,當(dāng)
時,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓
:
(
)的右焦點為
,且橢圓
過點
.
(1)求橢圓
的方程;
(2)設(shè)斜率為
的直線
與橢圓
交于不同兩點
、
,以線段
為底邊作等腰三角形
,其中頂點
的坐標(biāo)為
,求△
的面積.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓
(a>b>0)的離心率為
,且過點(
).
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+t與圓
(1<R<2)相切于點A,且l與橢圓E只有一個公共點B.
①求證:
;
②當(dāng)R為何值時,
取得最大值?并求出最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓
的左右頂點分別為
,離心率
.
(1)求橢圓的方程;
(2)若點
為曲線
:
上任一點(
點不同于
),直線
與直線
交于點
,
為線段
的中點,試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:解答題
我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點稱為切點.解決下列問題:
已知拋物線![]()
上的點
到焦點的距離等于4,直線
與拋物線相交于不同的兩點
、
,且
(
為定值).設(shè)線段
的中點為
,與直線
平行的拋物線的切點為
..![]()
(1)求出拋物線方程,并寫出焦點坐標(biāo)、準(zhǔn)線方程;
(2)用
、
表示出
點、
點的坐標(biāo),并證明
垂直于
軸;
(3)求
的面積,證明
的面積與
、
無關(guān),只與
有關(guān).
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,直線
與拋物線
(常數(shù)
)相交于不同的兩點
、
,且
(
為定值),線段
的中點為
,與直線
平行的切線的切點為
(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點為切點).![]()
(1)用
、
表示出
點、
點的坐標(biāo),并證明
垂直于
軸;
(2)求
的面積,證明
的面積與
、
無關(guān),只與
有關(guān);
(3)小張所在的興趣小組完成上面兩個小題后,小張連
、
,再作與
、
平行的切線,切點分別為
、
,小張馬上寫出了
、
的面積,由此小張求出了直線
與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請你說出理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知平面內(nèi)一動點
到兩個定點
、
的距離之和為
,線段
的長為
.![]()
(1)求動點
的軌跡
的方程;
(2)過點
作直線
與軌跡
交于
、
兩點,且點
在線段
的上方,
線段
的垂直平分線為
.
①求
的面積的最大值;
②軌跡
上是否存在除
、
外的兩點
、
關(guān)于直線
對稱,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知平面內(nèi)一動點
到兩個定點
、
的距離之和為
,線段
的長為![]()
.![]()
(1)求動點
的軌跡
;
(2)當(dāng)
時,過點
作直線
與軌跡
交于
、
兩點,且點
在線段
的上方,線段
的垂直平分線為![]()
①求
的面積的最大值;
②軌跡
上是否存在除
、
外的兩點
、
關(guān)于直線
對稱,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線
的準(zhǔn)線與x軸交于點M,過點M作圓
的兩條切線,切點為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com