科目: 來源: 題型:解答題
如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
,![]()
(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線BE上是否存在一點(diǎn)M,使得CM//平面ADE,若存在,求M的位置,不存在,請(qǐng)說明理由。
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB
平面ABCD,AE=EB=BC=2,F為CE上的點(diǎn),且BF
平面AC E.![]()
(1)求證:AE
BE;
(2)求三棱錐D—AEC的體積;
(3)求二面角A—CD—E的余弦值.
查看答案和解析>>
科目: 來源: 題型:解答題
本題共有2個(gè)小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱
的底面邊長(zhǎng)是
,體積是
,
分別是棱
、
的中點(diǎn).![]()
(1)求直線
與平面
所成的角(結(jié)果用反三角函數(shù)表示);
(2)求過
的平面與該正四棱柱所截得的多面體
的體積.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,
ABC=60。,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.![]()
(1)求證:BC⊥平面ACFE;
(2)若M為線段EF的中點(diǎn),設(shè)平面MAB與平面FCB所成角為
,求
.
查看答案和解析>>
科目: 來源: 題型:解答題
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一點(diǎn)P,使得DP與平面ACB1平行?證明你的結(jié)論.![]()
查看答案和解析>>
科目: 來源: 題型:解答題
如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.![]()
![]()
(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);
(2)問當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(3)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥QD時(shí),求二面角Q-PD-A的大。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com