科目: 來源: 題型:解答題
已知函數(shù)f(x)=ln ax-
(a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
(2)求證:對(duì)于任意正整數(shù)n,均有1+
(e為自然對(duì)數(shù)的底數(shù));
(3)當(dāng)a=1時(shí),是否存在過點(diǎn)(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線2x+y-3=0平行,求a的值;
(2)若b=
,試討論函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)f(x)=
.
(1)確定y=f(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-x-ax2在(0,2)上有極值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
定義在R上的函數(shù)
同時(shí)滿足以下條件:
①
在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②
是偶函數(shù);
③
在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)
的解析式;
(2)設(shè)g(x)=
,若存在實(shí)數(shù)x∈[1,e],使g(x)<
,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)函數(shù)f(x)=lnx-ax,g(x)=ex-ax,其中a為實(shí)數(shù).
(1)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(-1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求
的極值;
(2)當(dāng)
時(shí),討論
的單調(diào)性;
(3)若對(duì)任意的
,
,恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
若函數(shù)
在
上為增函數(shù)(
為常數(shù)),則稱
為區(qū)間
上的“一階比增函數(shù)”,
為
的一階比增區(qū)間.
(1) 若
是
上的“一階比增函數(shù)”,求實(shí)數(shù)
的取值范圍;
(2) 若
(
,
為常數(shù)),且
有唯一的零點(diǎn),求
的“一階比增區(qū)間”;
(3)若
是
上的“一階比增函數(shù)”,求證:
,![]()
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)
,
,
圖象與
軸異于原點(diǎn)的交點(diǎn)M處的切線為
,
與
軸的交點(diǎn)N處的切線為
, 并且
與
平行.
(1)求
的值;
(2)已知實(shí)數(shù)t∈R,求
的取值范圍及函數(shù)
的最小值;
(3)令
,給定
,對(duì)于兩個(gè)大于1的正數(shù)
,存在實(shí)數(shù)
滿足:
,
,并且使得不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com