科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:選擇題
已知函數(shù)
.當
時,不等式
恒成立,則實數(shù)
的取值范圍是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題
設(shè)
為兩個不重合的平面,
是兩條不重合的直線,給出下列四個命題:
①若
,
,
,
,則
;②若![]()
相交且不垂直,則
不垂直;③若
,則n⊥
; ④若
,則
.其中所有真命題的序號是
.
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
求圓心
在直線
上,且經(jīng)過原點及點
的圓
的標準方程.
【解析】本試題主要考查的圓的方程的求解,利用圓心和半徑表示圓,首先設(shè)圓心C的坐標為(
),然后利用
,得到
,從而圓心
,半徑
.可得原點 標準方程。
解:設(shè)圓心C的坐標為(
),...........2分
則
,即
,解得
........4分
所以圓心
,半徑
...........8分
故圓C的標準方程為:
.......10分
![]()
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
求由拋物線
與直線
及
所圍成圖形的面積.
【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點坐標,然后利用定積分表示出面積為
,所以得到
,由此得到結(jié)論為![]()
解:設(shè)所求圖形面積為
,則
![]()
=
.即所求圖形面積為
.
![]()
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
把函數(shù)
的圖象按向量
平移得到函數(shù)
的圖象.
(1)求函數(shù)
的解析式; (2)若
,證明:
.
【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設(shè)
上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入
,便可以得到結(jié)論。第二問中,令
,然后求導,利用最小值大于零得到。
(1)解:設(shè)
上任意一點為(x,y)則平移前對應(yīng)點是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 證明:令
,……6分
則
……8分
,∴
,∴
在
上單調(diào)遞增.……10分
故
,即![]()
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
已知直三棱柱
中,
,
,
是
和
的交點, 若
.
(1)求
的長; (2)求點
到平面
的距離;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本試題主要考查了距離和角的求解運用。第一問中,利用ACC
A
為正方形,
AC=3
第二問中,利用面BB
C
C內(nèi)作CD
BC
,
則CD就是點C平面A
BC
的距離CD=
,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為![]()
解法一: (1)連AC
交A
C于E, 易證ACC
A
為正方形,
AC=3
…………… 5分
(2)在面BB
C
C內(nèi)作CD
BC
,
則CD就是點C平面A
BC
的距離CD=
… 8分
(3) 易得AC![]()
面A
CB,
過E作EH
A
B于H, 連HC
,
則HC![]()
A
B
![]()
C
HE為二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小為
……… 12分
解法二: (1)分別以直線C
B、CC
、C
A為x、y為軸建立空間直角坐標系, 設(shè)|CA|=h, 則C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h(huán)) ……… 4分
![]()
·
=0,
h=3
(2)設(shè)平面A
BC
得法向量
=(a, b, c),則可求得
=(3, 4, 0) (令a=3)
點A到平面A
BC
的距離為H=|
|=
……… 8分
(3) 設(shè)平面A
BC的法向量為
=(x, y, z),則可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
滿足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小為![]()
查看答案和解析>>
科目: 來源:2013屆山西省晉商四校高二下學期聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的長軸長為
,焦點是
,點
到直線
的距離為
,過點
且傾斜角為銳角的直線
與橢圓交于A、B兩點,使得
.
(1)求橢圓的標準方程; (2)求直線l的方程.
【解析】(1)中利用點F1到直線x=-
的距離為
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到橢圓的方程。(2)中,利用
,設(shè)出點A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在橢圓
+y2=1上, 得到坐標的值,然后求解得到直線方程。
解:(1)∵F1到直線x=-
的距離為
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵橢圓的焦點在x軸上,∴所求橢圓的方程為
+y2=1.……4分
(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知![]()
,![]()
∴
……6分
∵A、B在橢圓
+y2=1上,
∴
……10分
∴l(xiāng)的斜率為
=
.
∴l(xiāng)的方程為y=
(x-
),即
x-y-
=0.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com