科目: 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:填空題
定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列 叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和。已知數(shù)列
是等和數(shù)列,且
,公和為5,那么
的值為: _ ;這個數(shù)列的前n項和
的計算公式為:_
___.
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
命題
方程
有兩個不等的正實數(shù)根,
命題
方程
無實數(shù)根。若“
或
”為真命題,求
的取值范圍。
【解析】本試題主要考查了命題的真值問題,以及二次方程根的綜合運用。
解:“p或q”為真命題,則p為真命題,或q為真命題,或q和p都是真命題
當p為真命題時,則
,得
;
當q為真命題時,則![]()
當q和p都是真命題時,得![]()
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
已知復數(shù)
,
,求
的取值范圍。
【解析】利用復數(shù)相等的概念,結合三角方程,把參數(shù)![]()
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.
【解析】本試題主要考查了二次方程根的問題的綜合運用。運用反證法思想進行證明。
先反設,然后推理論證,最后退出矛盾。證明:假設三個方程中都沒有兩個相異實根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。
證明:假設三個方程中都沒有兩個相異實根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由題意a、b、c互不相等,∴①式不能成立.
∴假設不成立,即三個方程中至少有一個方程有兩個相異實根.
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
如圖,在三棱柱
中,
側面
,
為棱
上異于
的一點,
,已知
,求:
(Ⅰ)異面直線
與
的距離;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標系
解:(I)以B為原點,
、
分別為Y,Z軸建立空間直角坐標系.由于,![]()
![]()
在三棱柱
中有
,
設![]()
![]()
![]()
又
側面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有
故二面角
的平面角
的大小為向量
與
的夾角.
![]()
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
已知f(n)=(2n+7)3n+9,存在自然數(shù)m,使得對任意正整數(shù)n,都能使m整除f(n),猜測出最大的m的值。并用數(shù)學歸納法證明你的猜測是正確的。
【解析】本試題主要考查了歸納猜想的運用,以及數(shù)學歸納法的證明。
∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
然后證明n=1,2時,由上得證,設n=k(k≥2)時,
f(k)=(2k+7)·3k+9能被36整除,則n=k+1時,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) 證明得到。解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
證明 n=1,2時,由上得證,設n=k(k≥2)時,
f(k)=(2k+7)·3k+9能被36整除,則n=k+1時,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2)
f(k+1)能被36整除
∵f(1)不能被大于36的數(shù)整除,∴所求最大的m值等于36
查看答案和解析>>
科目: 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
設函數(shù)f(x)=
在[1,+∞
上為增函數(shù).
(1)求正實數(shù)a的取值范圍;
(2)比較
的大小,說明理由;
(3)求證:
(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:
,依題意得:
≥0對x∈[1,+∞
恒成立
∴ax-1≥0對x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上為增函數(shù),
∴n≥2時:f(
)=
(3) ∵
∴![]()
查看答案和解析>>
科目: 來源:2013屆安徽省蚌埠市高二下學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題
在下列命題中正確是 ( )
A. “x=2時, x2-3x+2=0”的否命題; B.“若b=3,則b2=9”的逆命題;
C.若ac>bc,則a>b; D.“相似三角形的對應角相等”的逆否命題
查看答案和解析>>
科目: 來源:2013屆安徽省蚌埠市高二下學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題
平面內有一長度為2的線段AB和一動點P,若滿足|PA|+|PB|=8,則|PA|的取值范圍是 ( )
A.[1,4]; B.[2,6]; C.[3,5 ]; D. [3,6].
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com