科目: 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)
的圖像在點(diǎn)
處的切線
與直線
垂直,若數(shù)列
的前
項(xiàng)和為
,則
的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知x,y的取值如下表:
|
x |
0 |
1 |
3 |
4 |
|
y |
2.2 |
4.3 |
4.8 |
6.7 |
從散點(diǎn)圖可以看出y與x線性相關(guān),且回歸方程為
,則
___________.
查看答案和解析>>
科目: 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
下列命題中:①函數(shù)
的最小值是
;②對于任意實(shí)數(shù)
,有
且
時,
,
,則
時,
;③如果
是可導(dǎo)函數(shù),則
是函數(shù)
在
處取到極值的必要不充分條件;④已知存在實(shí)數(shù)
使得不等式
成立,則實(shí)數(shù)
的取值范圍是
。其中正確的命題是___________.
查看答案和解析>>
科目: 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已
是拋物線
上的一點(diǎn),過
點(diǎn)的切線方程的斜率可通過如下方式求得: 在
兩邊同時對x求導(dǎo),得:
,所以過
的切線的斜率:
,試用上述方法求出雙曲線
在
處的切線方程為___________.
查看答案和解析>>
科目: 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知集合
A=
,
B=
.
(1)若
,求A∩B,
;
(2)若A
,求實(shí)數(shù)m的取值范圍。
【解析】第一問首先翻譯A,B為最簡集合,即為
A=
![]()
B=![]()
然后利用當(dāng)m=-1時,則有 B=![]()
, ![]()
第二問,因?yàn)锳
,
所以滿足A![]()
得到結(jié)論。
解:因?yàn)锳=
,
B=![]()
當(dāng)m=-1時,則有 B=![]()
, ![]()
(2) 因?yàn)锳
,
所以滿足A![]()
故![]()
查看答案和解析>>
科目: 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
,其中
為自然對數(shù)的底數(shù).
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)記曲線
在點(diǎn)
(其中
)處的切線為
,
與
軸、
軸所圍成的三角形面積為
,求
的最大值.
【解析】第一問利用由已知
,所以
,
由
,得
,
所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
第二問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線
在點(diǎn)
處切線為
:
.
切線
與
軸的交點(diǎn)為
,與
軸的交點(diǎn)為
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時,
有最大值,此時
,
解:(Ⅰ)由已知
,所以
,
由
,得
, 所以,在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞減;
在區(qū)間
上,
,函數(shù)
在區(qū)間
上單調(diào)遞增;
即函數(shù)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
.
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線
在點(diǎn)
處切線為
:
.
切線
與
軸的交點(diǎn)為
,與
軸的交點(diǎn)為
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以
,
, 在區(qū)間
上,函數(shù)
單調(diào)遞增,在區(qū)間
上,函數(shù)
單調(diào)遞減.所以,當(dāng)
時,
有最大值,此時
,
所以,
的最大值為![]()
查看答案和解析>>
科目: 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
為了解某班學(xué)生喜愛打羽毛球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
|
|
喜愛打羽毛球 |
不喜愛打羽毛球 |
合計(jì) |
|
男生 |
|
5 |
|
|
女生 |
10 |
|
|
|
|
|
|
50 |
已知在全部50人中隨機(jī)抽取1人抽到不喜愛打羽毛球的學(xué)生的概率![]()
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛打羽毛球與性別有關(guān)?說明你的理由;
(3)已知喜愛打羽毛球的10位女生中,
還喜歡打籃球,
還喜歡打乒乓球,
還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進(jìn)行其他方面的調(diào)查,求女生
和
不全被選中的概率.下面的臨界值表供參考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(參考公式:
其中
.)
【解析】第一問利用數(shù)據(jù)寫出列聯(lián)表
第二問利用公式
計(jì)算的得到結(jié)論。
第三問中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:
,
,![]()
基本事件的總數(shù)為8
用
表示“
不全被選中”這一事件,則其對立事件
表示“
全被選中”這一事件,由于
由
2個基本事件由對立事件的概率公式得![]()
解:(1) 列聯(lián)表補(bǔ)充如下:
|
|
喜愛打羽毛球 |
不喜愛打羽毛球 |
合計(jì) |
|
男生 |
20 |
5 |
25 |
|
女生 |
10 |
15 |
25 |
|
合計(jì) |
30 |
20 |
50 |
(2)∵![]()
∴有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)
(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:
,
,![]()
基本事件的總數(shù)為8,
用
表示“
不全被選中”這一事件,則其對立事件
表示“
全被選中”這一事件,由于
由
2個基本事件由對立事件的概率公式得
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com