科目: 來(lái)源:2013屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實(shí)數(shù)
的取值范圍.
【解析】第一問中,利用定義,判定由題意得
,由
,所以![]()
第二問中, 由題意得方程
有兩實(shí)根
設(shè)
所以關(guān)于m的方程
在
有兩實(shí)根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個(gè)不同交點(diǎn),從而得到t的范圍。
解(I)由題意得
,由
,所以
(6分)
(II)由題意得方程
有兩實(shí)根
設(shè)
所以關(guān)于m的方程
在
有兩實(shí)根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個(gè)不同交點(diǎn)。
![]()
查看答案和解析>>
科目: 來(lái)源:2013屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,三棱錐
中,側(cè)面
底面
,
,且
,
.(Ⅰ)求證:
平面
;
(Ⅱ)若
為側(cè)棱PB的中點(diǎn),求直線AE與底面
所成角的正弦值.
![]()
【解析】第一問中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二問中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
![]()
解
(Ⅰ) 證明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,
因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,
又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已證
平面PBC,所以
,即
,
故
,
于是![]()
所以直線AE與底面ABC 所成角的正弦值為![]()
![]()
查看答案和解析>>
科目: 來(lái)源:2013屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上的橢圓C;其長(zhǎng)軸長(zhǎng)等于4,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)
(0,1), 問是否存在直線
與橢圓
交于
兩點(diǎn),且
?若存在,求出
的取值范圍,若不存在,請(qǐng)說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
第二問中,
假設(shè)存在這樣的直線
,設(shè)
,MN的中點(diǎn)為![]()
因?yàn)閨ME|=|NE|所以MN
EF所以![]()
(i)其中若
時(shí),則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
(Ⅱ) 假設(shè)存在這樣的直線
,設(shè)
,MN的中點(diǎn)為![]()
因?yàn)閨ME|=|NE|所以MN
EF所以![]()
(i)其中若
時(shí),則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得
……② ……………………9分
則
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
綜上(i)(ii)可知,存在這樣的直線
,其斜率k的取值范圍是![]()
查看答案和解析>>
科目: 來(lái)源:2013屆浙江省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) ![]()
R).
(Ⅰ)若
,求曲線
在點(diǎn)
處的的切線方程;
(Ⅱ)若
對(duì)任意 ![]()
恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問中,利用當(dāng)
時(shí),
.
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:![]()
第二問中,由題意得,
即
即可。
Ⅰ)當(dāng)
時(shí),
.
,
因?yàn)榍悬c(diǎn)為(
),
則
,
所以在點(diǎn)(
)處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,
即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以
恒成立,
故
在
上單調(diào)遞增,
……12分
要使
恒成立,則
,解得
.……15分
解法二:
……7分
(1)當(dāng)
時(shí),
在
上恒成立,
故
在
上單調(diào)遞增,
即
.
……10分
(2)當(dāng)
時(shí),令
,對(duì)稱軸
,
則
在
上單調(diào)遞增,又
① 當(dāng)
,即
時(shí),
在
上恒成立,
所以
在
單調(diào)遞增,
即
,不合題意,舍去
②當(dāng)
時(shí),
,
不合題意,舍去 14分
綜上所述:
查看答案和解析>>
科目: 來(lái)源:2014屆浙江省嘉興八校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
式子sin3000的值等于( )
A.
B.
C.-
D.-
![]()
查看答案和解析>>
科目: 來(lái)源:2014屆浙江省嘉興八校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn)
,則cosθ=( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來(lái)源:2014屆浙江省嘉興八校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
下列函數(shù)是奇函數(shù)的是( )
A.y=|sinx| B. y=cosx C.y=tanx D.y=sin|x|
查看答案和解析>>
科目: 來(lái)源:2014屆浙江省嘉興八校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
下列函數(shù)中,最小正周期為
,且圖象關(guān)于直線
對(duì)稱的是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來(lái)源:2014屆浙江省嘉興八校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)
的一個(gè)單調(diào)增區(qū)間是( )
A.(
) B.(
) C.(
) D.(
)
查看答案和解析>>
科目: 來(lái)源:2014屆浙江省嘉興八校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=2,b=
,A=45°,
則B=( )
A.90° B.60° C .30°或150° D.30°
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com