科目: 來源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題
為等差數(shù)列,若
,則使前
項(xiàng)
的最大自然數(shù)
是
.
查看答案和解析>>
科目: 來源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
在數(shù)列
中,
,當(dāng)
時(shí),
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求和 綜合運(yùn)用。第一問中 ,利用
,得到
且
,故故
為以1為首項(xiàng),公差為2的等差數(shù)列. 從而
![]()
第二問中,![]()
![]()
![]()
由
及
知
,從而可得
且![]()
故
為以1為首項(xiàng),公差為2的等差數(shù)列.
從而
……………………6分
(2)![]()
……………………9分
![]()
![]()
查看答案和解析>>
科目: 來源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
在
中,
是三角形的三內(nèi)角,
是三內(nèi)角對(duì)應(yīng)的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角
的大;
(Ⅱ)若
,求
的值.
【解析】第一問中利用依題意
且
,故![]()
第二問中,由題意
又由余弦定理知
![]()
,得到
,所以
,從而得到結(jié)論。
(1)依題意
且
,故
……………………6分
(2)由題意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
查看答案和解析>>
科目: 來源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
某化工廠擬建一座平面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示).如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/米2,水池所有墻的厚度忽略不計(jì),試設(shè)計(jì)污水處理池的長和寬,使總造價(jià)最低,并求出最低總造價(jià)。
![]()
【解析】本試題主要考查導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。首先設(shè)變量
設(shè)寬為
則長為
,依題意,總造價(jià)![]()
![]()
當(dāng)且僅當(dāng)
即
取等號(hào)
(元)得到結(jié)論。
設(shè)寬為
則長為
,依題意,總造價(jià)![]()
![]()
………6分
當(dāng)且僅當(dāng)
即
取等號(hào)
(元)……………………10分
故當(dāng)處理池寬為10米,長為16.2米時(shí)能使總造價(jià)最低,且最低總造價(jià)為38880元
查看答案和解析>>
科目: 來源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
已知等比數(shù)列
中,
,且
,公比
,(1)求
;(2)設(shè)
,求數(shù)列
的前
項(xiàng)和![]()
【解析】第一問,因?yàn)橛深}設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
從而![]()
第二問中,![]()
當(dāng)
時(shí),
,
時(shí)![]()
故
時(shí),
時(shí),![]()
分別討論得到結(jié)論。
由題設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
![]()
從而
……………………4分
(2)![]()
當(dāng)
時(shí),
,
時(shí)
……………………6分
故
時(shí),
……8分
時(shí),![]()
![]()
![]()
……………………10分
綜上可得
![]()
查看答案和解析>>
科目: 來源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
在
中,已知
,面積
,
(1)求
的三邊的長;
(2)設(shè)
是
(含邊界)內(nèi)的一點(diǎn),
到三邊
的距離分別是![]()
①寫出
所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識(shí)求出
的取值范圍.
【解析】第一問中利用設(shè)
中角
所對(duì)邊分別為![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三邊長![]()
![]()
第二問中,①
得
![]()
故![]()
②![]()
令
依題意有![]()
作圖,然后結(jié)合區(qū)域得到最值。
![]()
查看答案和解析>>
科目: 來源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
數(shù)列
首項(xiàng)
,前
項(xiàng)和
滿足等式
(常數(shù)
,
……)
(1)求證:
為等比數(shù)列;
(2)設(shè)數(shù)列
的公比為
,作數(shù)列
使
(
……),求數(shù)列
的通項(xiàng)公式.
(3)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
【解析】第一問利用由
得![]()
兩式相減得![]()
故
時(shí),![]()
從而
又
即
,而![]()
從而
故![]()
第二問中,
又
故
為等比數(shù)列,通項(xiàng)公式為![]()
第三問中,![]()
兩邊同乘以![]()
利用錯(cuò)位相減法得到和。
(1)由
得![]()
兩式相減得![]()
故
時(shí),![]()
從而
………………3分
又
即
,而![]()
從而
故![]()
對(duì)任意
,
為常數(shù),即
為等比數(shù)列………………5分
(2)
……………………7分
又
故
為等比數(shù)列,通項(xiàng)公式為
………………9分
(3)![]()
兩邊同乘以![]()
………………11分
兩式相減得![]()
![]()
查看答案和解析>>
科目: 來源:2013屆湖北襄陽四中、荊州、龍泉中學(xué)高二下期中文科數(shù)學(xué)(解析版) 題型:選擇題
“所有金屬都能導(dǎo)電,鐵是金屬,所以鐵能導(dǎo)電”這種推理屬于
A.演繹推理 B.類比推理 C.合情推理 D.歸納推理
查看答案和解析>>
科目: 來源:2013屆湖北襄陽四中、荊州、龍泉中學(xué)高二下期中文科數(shù)學(xué)(解析版) 題型:選擇題
復(fù)數(shù)
(
是虛數(shù)單位),則復(fù)數(shù)
虛部是
A.-1+2
B. -1 C.2
D.2
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com